Mister Exam

Other calculators


15-8x^2-2x=0

15-8x^2-2x=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
        2          
15 - 8*x  - 2*x = 0
$$- 2 x + \left(15 - 8 x^{2}\right) = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = -8$$
$$b = -2$$
$$c = 15$$
, then
D = b^2 - 4 * a * c = 

(-2)^2 - 4 * (-8) * (15) = 484

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = - \frac{3}{2}$$
$$x_{2} = \frac{5}{4}$$
Vieta's Theorem
rewrite the equation
$$- 2 x + \left(15 - 8 x^{2}\right) = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} + \frac{x}{4} - \frac{15}{8} = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = \frac{1}{4}$$
$$q = \frac{c}{a}$$
$$q = - \frac{15}{8}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = - \frac{1}{4}$$
$$x_{1} x_{2} = - \frac{15}{8}$$
The graph
Sum and product of roots [src]
sum
-3/2 + 5/4
$$- \frac{3}{2} + \frac{5}{4}$$
=
-1/4
$$- \frac{1}{4}$$
product
-3*5
----
2*4 
$$- \frac{15}{8}$$
=
-15/8
$$- \frac{15}{8}$$
-15/8
Rapid solution [src]
x1 = -3/2
$$x_{1} = - \frac{3}{2}$$
x2 = 5/4
$$x_{2} = \frac{5}{4}$$
x2 = 5/4
Numerical answer [src]
x1 = -1.5
x2 = 1.25
x2 = 1.25
The graph
15-8x^2-2x=0 equation