ctgx=o equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
$$\cot{\left(x \right)} = o$$
transform
$$- o + \cot{\left(x \right)} - 1 = 0$$
$$- o + \cot{\left(x \right)} - 1 = 0$$
Do replacement
$$w = \cot{\left(x \right)}$$
Move free summands (without w)
from left part to right part, we given:
$$- o + w = 1$$
Move the summands with the other variables
from left part to right part, we given:
$$w = o + 1$$
We get the answer: w = 1 + o
do backward replacement
$$\cot{\left(x \right)} = w$$
substitute w:
x1 = I*im(acot(o)) + re(acot(o))
$$x_{1} = \operatorname{re}{\left(\operatorname{acot}{\left(o \right)}\right)} + i \operatorname{im}{\left(\operatorname{acot}{\left(o \right)}\right)}$$
x1 = re(acot(o)) + i*im(acot(o))
Sum and product of roots
[src]
I*im(acot(o)) + re(acot(o))
$$\operatorname{re}{\left(\operatorname{acot}{\left(o \right)}\right)} + i \operatorname{im}{\left(\operatorname{acot}{\left(o \right)}\right)}$$
I*im(acot(o)) + re(acot(o))
$$\operatorname{re}{\left(\operatorname{acot}{\left(o \right)}\right)} + i \operatorname{im}{\left(\operatorname{acot}{\left(o \right)}\right)}$$
I*im(acot(o)) + re(acot(o))
$$\operatorname{re}{\left(\operatorname{acot}{\left(o \right)}\right)} + i \operatorname{im}{\left(\operatorname{acot}{\left(o \right)}\right)}$$
I*im(acot(o)) + re(acot(o))
$$\operatorname{re}{\left(\operatorname{acot}{\left(o \right)}\right)} + i \operatorname{im}{\left(\operatorname{acot}{\left(o \right)}\right)}$$
i*im(acot(o)) + re(acot(o))