Mister Exam

Other calculators

cosx-lnx=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
cos(x) - log(x) = 0
$$- \log{\left(x \right)} + \cos{\left(x \right)} = 0$$
The graph
Numerical answer [src]
x1 = 1.30296400121601
x2 = -88.579594692846 - 2.38771645220072*i
x3 = -1.28661280828408 + 1.58835248620994*i
x4 = -38.4113295997146 + 2.25547141087116*i
x5 = -113.687337686392 + 2.42525436322984*i
x6 = -13.434958143797 + 2.07377965970276*i
x7 = -101.132477792599 - 2.40776206249419*i
x8 = -50.9423589333256 + 2.30130729888894*i
x9 = -7.26120884756665 + 1.9575344532759*i
x10 = -94.8557523855794 + 2.398101909242*i
x11 = -63.4829914931741 - 2.33621574724128*i
x12 = -13.434958143797 - 2.07377965970276*i
x13 = 6.1566487107687 - 1.22682801449688*i
x14 = -82.3041004501409 - 2.37649406935352*i
x15 = -1.28661280828408 - 1.58835248620994*i
x16 = -63.4829914931741 + 2.33621574724128*i
x17 = -88.579594692846 + 2.38771645220072*i
x18 = -69.7556196929124 - 2.35094544865849*i
x19 = -25.8989224818271 - 2.18944773115302*i
x20 = -76.0293904276492 - 2.36429575307*i
x21 = -57.2117787778118 + 2.31980597809406*i
x22 = -19.6568411997964 + 2.14176861754885*i
x23 = -69.7556196929124 + 2.35094544865849*i
x23 = -69.7556196929124 + 2.35094544865849*i