Mister Exam

Other calculators


cos(x)=2

cos(x)=2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
cos(x) = 2
cos(x)=2\cos{\left(x \right)} = 2
Detail solution
Given the equation
cos(x)=2\cos{\left(x \right)} = 2
- this is the simplest trigonometric equation
As right part of the equation
modulo =
True

but cos
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
0-80-60-40-2020406080-1001005-5
Rapid solution [src]
x1 = 2*pi - I*im(acos(2))
x1=2πiim(acos(2))x_{1} = 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}
x2 = I*im(acos(2)) + re(acos(2))
x2=re(acos(2))+iim(acos(2))x_{2} = \operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}
Sum and product of roots [src]
sum
0 + 2*pi - I*im(acos(2)) + I*im(acos(2)) + re(acos(2))
(0+(2πiim(acos(2))))+(re(acos(2))+iim(acos(2)))\left(0 + \left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)\right) + \left(\operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)
=
2*pi + re(acos(2))
re(acos(2))+2π\operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)} + 2 \pi
product
1*(2*pi - I*im(acos(2)))*(I*im(acos(2)) + re(acos(2)))
1(2πiim(acos(2)))(re(acos(2))+iim(acos(2)))1 \cdot \left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)
=
(2*pi - I*im(acos(2)))*(I*im(acos(2)) + re(acos(2)))
(2πiim(acos(2)))(re(acos(2))+iim(acos(2)))\left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)
(2*pi - i*im(acos(2)))*(i*im(acos(2)) + re(acos(2)))
Numerical answer [src]
x1 = 6.28318530717959 - 1.31695789692482*i
x2 = 1.31695789692482*i
x2 = 1.31695789692482*i
The graph
cos(x)=2 equation