Mister Exam

cosx=-1.2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
cos(x) = -6/5
cos(x)=65\cos{\left(x \right)} = - \frac{6}{5}
Detail solution
Given the equation
cos(x)=65\cos{\left(x \right)} = - \frac{6}{5}
- this is the simplest trigonometric equation
As right part of the equation
modulo =
True

but cos
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
0-80-60-40-2020406080-1001002.5-2.5
Sum and product of roots [src]
sum
0 + -re(acos(-6/5)) + 2*pi - I*im(acos(-6/5)) + I*im(acos(-6/5)) + re(acos(-6/5))
(re(acos(65))+iim(acos(65)))(2π+re(acos(65))+iim(acos(65)))\left(\operatorname{re}{\left(\operatorname{acos}{\left(- \frac{6}{5} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{6}{5} \right)}\right)}\right) - \left(- 2 \pi + \operatorname{re}{\left(\operatorname{acos}{\left(- \frac{6}{5} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{6}{5} \right)}\right)}\right)
=
2*pi
2π2 \pi
product
1*(-re(acos(-6/5)) + 2*pi - I*im(acos(-6/5)))*(I*im(acos(-6/5)) + re(acos(-6/5)))
(re(acos(65))+iim(acos(65)))1(re(acos(65))+2πiim(acos(65)))\left(\operatorname{re}{\left(\operatorname{acos}{\left(- \frac{6}{5} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{6}{5} \right)}\right)}\right) 1 \left(- \operatorname{re}{\left(\operatorname{acos}{\left(- \frac{6}{5} \right)}\right)} + 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{6}{5} \right)}\right)}\right)
=
-(I*im(acos(-6/5)) + re(acos(-6/5)))*(-2*pi + I*im(acos(-6/5)) + re(acos(-6/5)))
(re(acos(65))+iim(acos(65)))(2π+re(acos(65))+iim(acos(65)))- \left(\operatorname{re}{\left(\operatorname{acos}{\left(- \frac{6}{5} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{6}{5} \right)}\right)}\right) \left(- 2 \pi + \operatorname{re}{\left(\operatorname{acos}{\left(- \frac{6}{5} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{6}{5} \right)}\right)}\right)
-(i*im(acos(-6/5)) + re(acos(-6/5)))*(-2*pi + i*im(acos(-6/5)) + re(acos(-6/5)))
Rapid solution [src]
x1 = -re(acos(-6/5)) + 2*pi - I*im(acos(-6/5))
x1=re(acos(65))+2πiim(acos(65))x_{1} = - \operatorname{re}{\left(\operatorname{acos}{\left(- \frac{6}{5} \right)}\right)} + 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{6}{5} \right)}\right)}
x2 = I*im(acos(-6/5)) + re(acos(-6/5))
x2=re(acos(65))+iim(acos(65))x_{2} = \operatorname{re}{\left(\operatorname{acos}{\left(- \frac{6}{5} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{6}{5} \right)}\right)}
Numerical answer [src]
x1 = 3.14159265358979 + 0.622362503714779*i
x2 = 3.14159265358979 - 0.622362503714779*i
x2 = 3.14159265358979 - 0.622362503714779*i
The graph
cosx=-1.2 equation