cosx=-1.2 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
cos(x)=−56- this is the simplest trigonometric equation
As right part of the equation
modulo =
True
but cos
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
Sum and product of roots
[src]
0 + -re(acos(-6/5)) + 2*pi - I*im(acos(-6/5)) + I*im(acos(-6/5)) + re(acos(-6/5))
(re(acos(−56))+iim(acos(−56)))−(−2π+re(acos(−56))+iim(acos(−56)))
1*(-re(acos(-6/5)) + 2*pi - I*im(acos(-6/5)))*(I*im(acos(-6/5)) + re(acos(-6/5)))
(re(acos(−56))+iim(acos(−56)))1(−re(acos(−56))+2π−iim(acos(−56)))
-(I*im(acos(-6/5)) + re(acos(-6/5)))*(-2*pi + I*im(acos(-6/5)) + re(acos(-6/5)))
−(re(acos(−56))+iim(acos(−56)))(−2π+re(acos(−56))+iim(acos(−56)))
-(i*im(acos(-6/5)) + re(acos(-6/5)))*(-2*pi + i*im(acos(-6/5)) + re(acos(-6/5)))
x1 = -re(acos(-6/5)) + 2*pi - I*im(acos(-6/5))
x1=−re(acos(−56))+2π−iim(acos(−56))
x2 = I*im(acos(-6/5)) + re(acos(-6/5))
x2=re(acos(−56))+iim(acos(−56))
x1 = 3.14159265358979 + 0.622362503714779*i
x2 = 3.14159265358979 - 0.622362503714779*i
x2 = 3.14159265358979 - 0.622362503714779*i