cos6x=-sqrt(3/2) equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
$$\cos{\left(6 x \right)} = - \sqrt{\frac{3}{2}}$$
- this is the simplest trigonometric equation
As right part of the equation
modulo =
True
but cos
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
/ / ___ \\ / / ___ \\
| |-\/ 6 || | |-\/ 6 ||
re|acos|-------|| I*im|acos|-------||
\ \ 2 // pi \ \ 2 //
x1 = - ----------------- + -- - -------------------
6 3 6
$$x_{1} = - \frac{\operatorname{re}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6} + \frac{\pi}{3} - \frac{i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6}$$
/ / ___ \\ / / ___ \\
| |-\/ 6 || | |-\/ 6 ||
re|acos|-------|| I*im|acos|-------||
\ \ 2 // \ \ 2 //
x2 = ----------------- + -------------------
6 6
$$x_{2} = \frac{\operatorname{re}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6} + \frac{i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6}$$
x2 = re(acos(-sqrt(6)/2))/6 + i*im(acos(-sqrt(6)/2))/6
Sum and product of roots
[src]
/ / ___ \\ / / ___ \\ / / ___ \\ / / ___ \\
| |-\/ 6 || | |-\/ 6 || | |-\/ 6 || | |-\/ 6 ||
re|acos|-------|| I*im|acos|-------|| re|acos|-------|| I*im|acos|-------||
\ \ 2 // pi \ \ 2 // \ \ 2 // \ \ 2 //
- ----------------- + -- - ------------------- + ----------------- + -------------------
6 3 6 6 6
$$\left(\frac{\operatorname{re}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6} + \frac{i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6}\right) + \left(- \frac{\operatorname{re}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6} + \frac{\pi}{3} - \frac{i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6}\right)$$
$$\frac{\pi}{3}$$
/ / / ___ \\ / / ___ \\\ / / / ___ \\ / / ___ \\\
| | |-\/ 6 || | |-\/ 6 ||| | | |-\/ 6 || | |-\/ 6 |||
| re|acos|-------|| I*im|acos|-------||| |re|acos|-------|| I*im|acos|-------|||
| \ \ 2 // pi \ \ 2 //| | \ \ 2 // \ \ 2 //|
|- ----------------- + -- - -------------------|*|----------------- + -------------------|
\ 6 3 6 / \ 6 6 /
$$\left(\frac{\operatorname{re}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6} + \frac{i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6}\right) \left(- \frac{\operatorname{re}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6} + \frac{\pi}{3} - \frac{i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6}\right)$$
/ / / ___ \\ / / ___ \\\ / / / ___ \\ / / ___ \\\
| | |-\/ 6 || | |-\/ 6 ||| | | |-\/ 6 || | |-\/ 6 |||
-|I*im|acos|-------|| + re|acos|-------|||*|-2*pi + I*im|acos|-------|| + re|acos|-------|||
\ \ \ 2 // \ \ 2 /// \ \ \ 2 // \ \ 2 ///
---------------------------------------------------------------------------------------------
36
$$- \frac{\left(\operatorname{re}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}\right) \left(- 2 \pi + \operatorname{re}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}\right)}{36}$$
-(i*im(acos(-sqrt(6)/2)) + re(acos(-sqrt(6)/2)))*(-2*pi + i*im(acos(-sqrt(6)/2)) + re(acos(-sqrt(6)/2)))/36
x1 = 0.523598775598299 + 0.109746491410401*i
x2 = 0.523598775598299 - 0.109746491410401*i
x2 = 0.523598775598299 - 0.109746491410401*i