Mister Exam

Other calculators

cos6x=-sqrt(3/2) equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
              _____
cos(6*x) = -\/ 3/2 
$$\cos{\left(6 x \right)} = - \sqrt{\frac{3}{2}}$$
Detail solution
Given the equation
$$\cos{\left(6 x \right)} = - \sqrt{\frac{3}{2}}$$
- this is the simplest trigonometric equation
As right part of the equation
modulo =
True

but cos
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
The graph
Rapid solution [src]
         /    /   ___ \\            /    /   ___ \\
         |    |-\/ 6  ||            |    |-\/ 6  ||
       re|acos|-------||        I*im|acos|-------||
         \    \   2   //   pi       \    \   2   //
x1 = - ----------------- + -- - -------------------
               6           3             6         
$$x_{1} = - \frac{\operatorname{re}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6} + \frac{\pi}{3} - \frac{i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6}$$
       /    /   ___ \\       /    /   ___ \\
       |    |-\/ 6  ||       |    |-\/ 6  ||
     re|acos|-------||   I*im|acos|-------||
       \    \   2   //       \    \   2   //
x2 = ----------------- + -------------------
             6                    6         
$$x_{2} = \frac{\operatorname{re}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6} + \frac{i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6}$$
x2 = re(acos(-sqrt(6)/2))/6 + i*im(acos(-sqrt(6)/2))/6
Sum and product of roots [src]
sum
    /    /   ___ \\            /    /   ___ \\     /    /   ___ \\       /    /   ___ \\
    |    |-\/ 6  ||            |    |-\/ 6  ||     |    |-\/ 6  ||       |    |-\/ 6  ||
  re|acos|-------||        I*im|acos|-------||   re|acos|-------||   I*im|acos|-------||
    \    \   2   //   pi       \    \   2   //     \    \   2   //       \    \   2   //
- ----------------- + -- - ------------------- + ----------------- + -------------------
          6           3             6                    6                    6         
$$\left(\frac{\operatorname{re}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6} + \frac{i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6}\right) + \left(- \frac{\operatorname{re}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6} + \frac{\pi}{3} - \frac{i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6}\right)$$
=
pi
--
3 
$$\frac{\pi}{3}$$
product
/    /    /   ___ \\            /    /   ___ \\\ /  /    /   ___ \\       /    /   ___ \\\
|    |    |-\/ 6  ||            |    |-\/ 6  ||| |  |    |-\/ 6  ||       |    |-\/ 6  |||
|  re|acos|-------||        I*im|acos|-------||| |re|acos|-------||   I*im|acos|-------|||
|    \    \   2   //   pi       \    \   2   //| |  \    \   2   //       \    \   2   //|
|- ----------------- + -- - -------------------|*|----------------- + -------------------|
\          6           3             6         / \        6                    6         /
$$\left(\frac{\operatorname{re}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6} + \frac{i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6}\right) \left(- \frac{\operatorname{re}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6} + \frac{\pi}{3} - \frac{i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}}{6}\right)$$
=
 /    /    /   ___ \\     /    /   ___ \\\ /            /    /   ___ \\     /    /   ___ \\\ 
 |    |    |-\/ 6  ||     |    |-\/ 6  ||| |            |    |-\/ 6  ||     |    |-\/ 6  ||| 
-|I*im|acos|-------|| + re|acos|-------|||*|-2*pi + I*im|acos|-------|| + re|acos|-------||| 
 \    \    \   2   //     \    \   2   /// \            \    \   2   //     \    \   2   /// 
---------------------------------------------------------------------------------------------
                                              36                                             
$$- \frac{\left(\operatorname{re}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}\right) \left(- 2 \pi + \operatorname{re}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(- \frac{\sqrt{6}}{2} \right)}\right)}\right)}{36}$$
-(i*im(acos(-sqrt(6)/2)) + re(acos(-sqrt(6)/2)))*(-2*pi + i*im(acos(-sqrt(6)/2)) + re(acos(-sqrt(6)/2)))/36
Numerical answer [src]
x1 = 0.523598775598299 + 0.109746491410401*i
x2 = 0.523598775598299 - 0.109746491410401*i
x2 = 0.523598775598299 - 0.109746491410401*i