Mister Exam

Other calculators

c4=(2*c-8)*2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
c4 = (2*c - 8)*2
$$c_{4} = 2 \left(2 c - 8\right)$$
Detail solution
Given the linear equation:
c4 = (2*c-8)*2

Expand brackets in the right part
c4 = 2*c*2-8*2

We get the answer: c4 = -16 + 4*c
The graph
Sum and product of roots [src]
sum
-16 + 4*re(c) + 4*I*im(c)
$$4 \operatorname{re}{\left(c\right)} + 4 i \operatorname{im}{\left(c\right)} - 16$$
=
-16 + 4*re(c) + 4*I*im(c)
$$4 \operatorname{re}{\left(c\right)} + 4 i \operatorname{im}{\left(c\right)} - 16$$
product
-16 + 4*re(c) + 4*I*im(c)
$$4 \operatorname{re}{\left(c\right)} + 4 i \operatorname{im}{\left(c\right)} - 16$$
=
-16 + 4*re(c) + 4*I*im(c)
$$4 \operatorname{re}{\left(c\right)} + 4 i \operatorname{im}{\left(c\right)} - 16$$
-16 + 4*re(c) + 4*i*im(c)
Rapid solution [src]
c41 = -16 + 4*re(c) + 4*I*im(c)
$$c_{41} = 4 \operatorname{re}{\left(c\right)} + 4 i \operatorname{im}{\left(c\right)} - 16$$
c41 = 4*re(c) + 4*i*im(c) - 16