c4=(2*c-8)*2 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
c4 = (2*c-8)*2
Expand brackets in the right part
c4 = 2*c*2-8*2
We get the answer: c4 = -16 + 4*c
Sum and product of roots
[src]
-16 + 4*re(c) + 4*I*im(c)
$$4 \operatorname{re}{\left(c\right)} + 4 i \operatorname{im}{\left(c\right)} - 16$$
-16 + 4*re(c) + 4*I*im(c)
$$4 \operatorname{re}{\left(c\right)} + 4 i \operatorname{im}{\left(c\right)} - 16$$
-16 + 4*re(c) + 4*I*im(c)
$$4 \operatorname{re}{\left(c\right)} + 4 i \operatorname{im}{\left(c\right)} - 16$$
-16 + 4*re(c) + 4*I*im(c)
$$4 \operatorname{re}{\left(c\right)} + 4 i \operatorname{im}{\left(c\right)} - 16$$
-16 + 4*re(c) + 4*i*im(c)
c41 = -16 + 4*re(c) + 4*I*im(c)
$$c_{41} = 4 \operatorname{re}{\left(c\right)} + 4 i \operatorname{im}{\left(c\right)} - 16$$
c41 = 4*re(c) + 4*i*im(c) - 16