Mister Exam

Other calculators

c^6-10*c^4-5*c^2+50=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 6       4      2         
c  - 10*c  - 5*c  + 50 = 0
$$\left(- 5 c^{2} + \left(c^{6} - 10 c^{4}\right)\right) + 50 = 0$$
Rapid solution [src]
        ____
c1 = -\/ 10 
$$c_{1} = - \sqrt{10}$$
       ____
c2 = \/ 10 
$$c_{2} = \sqrt{10}$$
      4 ___
c3 = -\/ 5 
$$c_{3} = - \sqrt[4]{5}$$
     4 ___
c4 = \/ 5 
$$c_{4} = \sqrt[4]{5}$$
        4 ___
c5 = -I*\/ 5 
$$c_{5} = - \sqrt[4]{5} i$$
       4 ___
c6 = I*\/ 5 
$$c_{6} = \sqrt[4]{5} i$$
c6 = 5^(1/4)*i
Sum and product of roots [src]
sum
    ____     ____   4 ___   4 ___     4 ___     4 ___
- \/ 10  + \/ 10  - \/ 5  + \/ 5  - I*\/ 5  + I*\/ 5 
$$\left(\left(\left(- \sqrt[4]{5} + \left(- \sqrt{10} + \sqrt{10}\right)\right) + \sqrt[4]{5}\right) - \sqrt[4]{5} i\right) + \sqrt[4]{5} i$$
=
0
$$0$$
product
   ____   ____ / 4 ___\ 4 ___ /   4 ___\   4 ___
-\/ 10 *\/ 10 *\-\/ 5 /*\/ 5 *\-I*\/ 5 /*I*\/ 5 
$$\sqrt[4]{5} i - \sqrt[4]{5} i \sqrt[4]{5} \cdot - \sqrt[4]{5} \cdot - \sqrt{10} \sqrt{10}$$
=
50
$$50$$
50
Numerical answer [src]
c1 = 3.16227766016838
c2 = 1.49534878122122
c3 = -1.49534878122122
c4 = 1.49534878122122*i
c5 = -1.49534878122122*i
c6 = -3.16227766016838
c6 = -3.16227766016838