arccos(sqrt(15)/4)=x equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
acos(sqrt(15)/4) = x
Expand brackets in the left part
acossqrt/4+15/4) = x
Move the summands with the unknown x
from the right part to the left part:
$$- x + \operatorname{acos}{\left(\frac{\sqrt{15}}{4} \right)} = 0$$
Divide both parts of the equation by (-x + acos(sqrt(15)/4))/x
x = 0 / ((-x + acos(sqrt(15)/4))/x)
We get the answer: x = acos(sqrt(15)/4)
/ ____\
|\/ 15 |
x1 = acos|------|
\ 4 /
$$x_{1} = \operatorname{acos}{\left(\frac{\sqrt{15}}{4} \right)}$$
Sum and product of roots
[src]
/ ____\
|\/ 15 |
acos|------|
\ 4 /
$$\operatorname{acos}{\left(\frac{\sqrt{15}}{4} \right)}$$
/ ____\
|\/ 15 |
acos|------|
\ 4 /
$$\operatorname{acos}{\left(\frac{\sqrt{15}}{4} \right)}$$
/ ____\
|\/ 15 |
acos|------|
\ 4 /
$$\operatorname{acos}{\left(\frac{\sqrt{15}}{4} \right)}$$
/ ____\
|\/ 15 |
acos|------|
\ 4 /
$$\operatorname{acos}{\left(\frac{\sqrt{15}}{4} \right)}$$