Mister Exam

Other calculators

absolute(x^2-9x+7)=7 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
| 2          |    
|x  - 9*x + 7| = 7
$$\left|{\left(x^{2} - 9 x\right) + 7}\right| = 7$$
Detail solution
For every modulo expressions in the equation
allow cases, when this expressions ">=0" or "<0",
solve the resulting equation.

1.
$$x^{2} - 9 x + 7 \geq 0$$
or
$$\left(x \leq \frac{9}{2} - \frac{\sqrt{53}}{2} \wedge -\infty < x\right) \vee \left(\frac{\sqrt{53}}{2} + \frac{9}{2} \leq x \wedge x < \infty\right)$$
we get the equation
$$\left(x^{2} - 9 x + 7\right) - 7 = 0$$
after simplifying we get
$$x^{2} - 9 x = 0$$
the solution in this interval:
$$x_{1} = 0$$
$$x_{2} = 9$$

2.
$$x^{2} - 9 x + 7 < 0$$
or
$$x < \frac{\sqrt{53}}{2} + \frac{9}{2} \wedge \frac{9}{2} - \frac{\sqrt{53}}{2} < x$$
we get the equation
$$\left(- x^{2} + 9 x - 7\right) - 7 = 0$$
after simplifying we get
$$- x^{2} + 9 x - 14 = 0$$
the solution in this interval:
$$x_{3} = 2$$
$$x_{4} = 7$$


The final answer:
$$x_{1} = 0$$
$$x_{2} = 9$$
$$x_{3} = 2$$
$$x_{4} = 7$$
The graph
Rapid solution [src]
x1 = 0
$$x_{1} = 0$$
x2 = 2
$$x_{2} = 2$$
x3 = 7
$$x_{3} = 7$$
x4 = 9
$$x_{4} = 9$$
x4 = 9
Sum and product of roots [src]
sum
2 + 7 + 9
$$\left(2 + 7\right) + 9$$
=
18
$$18$$
product
0*2*7*9
$$9 \cdot 7 \cdot 0 \cdot 2$$
=
0
$$0$$
0
Numerical answer [src]
x1 = 7.0
x2 = 0.0
x3 = 9.0
x4 = 2.0
x4 = 2.0