The solution of the parametric equation
Given the equation with a parameter:
$$a x - b = c$$
Коэффициент при x равен
$$a$$
then possible cases for a :
$$a < 0$$
$$a = 0$$
Consider all cases in more detail:
With
$$a < 0$$
the equation
$$- b - c - x = 0$$
its solution
$$x = - b - c$$
With
$$a = 0$$
the equation
$$- b - c = 0$$
its solution
Sum and product of roots
[src]
/(im(b) + im(c))*re(a) (re(b) + re(c))*im(a)\ (im(b) + im(c))*im(a) (re(b) + re(c))*re(a)
I*|--------------------- - ---------------------| + --------------------- + ---------------------
| 2 2 2 2 | 2 2 2 2
\ im (a) + re (a) im (a) + re (a) / im (a) + re (a) im (a) + re (a)
$$i \left(- \frac{\left(\operatorname{re}{\left(b\right)} + \operatorname{re}{\left(c\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(b\right)} + \operatorname{im}{\left(c\right)}\right) \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(b\right)} + \operatorname{re}{\left(c\right)}\right) \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(b\right)} + \operatorname{im}{\left(c\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
/(im(b) + im(c))*re(a) (re(b) + re(c))*im(a)\ (im(b) + im(c))*im(a) (re(b) + re(c))*re(a)
I*|--------------------- - ---------------------| + --------------------- + ---------------------
| 2 2 2 2 | 2 2 2 2
\ im (a) + re (a) im (a) + re (a) / im (a) + re (a) im (a) + re (a)
$$i \left(- \frac{\left(\operatorname{re}{\left(b\right)} + \operatorname{re}{\left(c\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(b\right)} + \operatorname{im}{\left(c\right)}\right) \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(b\right)} + \operatorname{re}{\left(c\right)}\right) \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(b\right)} + \operatorname{im}{\left(c\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
/(im(b) + im(c))*re(a) (re(b) + re(c))*im(a)\ (im(b) + im(c))*im(a) (re(b) + re(c))*re(a)
I*|--------------------- - ---------------------| + --------------------- + ---------------------
| 2 2 2 2 | 2 2 2 2
\ im (a) + re (a) im (a) + re (a) / im (a) + re (a) im (a) + re (a)
$$i \left(- \frac{\left(\operatorname{re}{\left(b\right)} + \operatorname{re}{\left(c\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(b\right)} + \operatorname{im}{\left(c\right)}\right) \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(b\right)} + \operatorname{re}{\left(c\right)}\right) \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(b\right)} + \operatorname{im}{\left(c\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
I*((im(b) + im(c))*re(a) - (re(b) + re(c))*im(a)) + (im(b) + im(c))*im(a) + (re(b) + re(c))*re(a)
-------------------------------------------------------------------------------------------------
2 2
im (a) + re (a)
$$\frac{i \left(- \left(\operatorname{re}{\left(b\right)} + \operatorname{re}{\left(c\right)}\right) \operatorname{im}{\left(a\right)} + \left(\operatorname{im}{\left(b\right)} + \operatorname{im}{\left(c\right)}\right) \operatorname{re}{\left(a\right)}\right) + \left(\operatorname{re}{\left(b\right)} + \operatorname{re}{\left(c\right)}\right) \operatorname{re}{\left(a\right)} + \left(\operatorname{im}{\left(b\right)} + \operatorname{im}{\left(c\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
(i*((im(b) + im(c))*re(a) - (re(b) + re(c))*im(a)) + (im(b) + im(c))*im(a) + (re(b) + re(c))*re(a))/(im(a)^2 + re(a)^2)
/(im(b) + im(c))*re(a) (re(b) + re(c))*im(a)\ (im(b) + im(c))*im(a) (re(b) + re(c))*re(a)
x1 = I*|--------------------- - ---------------------| + --------------------- + ---------------------
| 2 2 2 2 | 2 2 2 2
\ im (a) + re (a) im (a) + re (a) / im (a) + re (a) im (a) + re (a)
$$x_{1} = i \left(- \frac{\left(\operatorname{re}{\left(b\right)} + \operatorname{re}{\left(c\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(b\right)} + \operatorname{im}{\left(c\right)}\right) \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(b\right)} + \operatorname{re}{\left(c\right)}\right) \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(b\right)} + \operatorname{im}{\left(c\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
x1 = i*(-(re(b) + re(c))*im(a)/(re(a)^2 + im(a)^2) + (im(b) + im(c))*re(a)/(re(a)^2 + im(a)^2)) + (re(b) + re(c))*re(a)/(re(a)^2 + im(a)^2) + (im(b) + im(c))*im(a)/(re(a)^2 + im(a)^2)