Mister Exam

a*x-b=c equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
a*x - b = c
$$a x - b = c$$
Detail solution
Given the linear equation:
a*x-b = c

Divide both parts of the equation by (-b + a*x)/x
x = c / ((-b + a*x)/x)

We get the answer: x = (b + c)/a
The solution of the parametric equation
Given the equation with a parameter:
$$a x - b = c$$
Коэффициент при x равен
$$a$$
then possible cases for a :
$$a < 0$$
$$a = 0$$
Consider all cases in more detail:
With
$$a < 0$$
the equation
$$- b - c - x = 0$$
its solution
$$x = - b - c$$
With
$$a = 0$$
the equation
$$- b - c = 0$$
its solution
The graph
Sum and product of roots [src]
sum
  /(im(b) + im(c))*re(a)   (re(b) + re(c))*im(a)\   (im(b) + im(c))*im(a)   (re(b) + re(c))*re(a)
I*|--------------------- - ---------------------| + --------------------- + ---------------------
  |     2        2              2        2      |        2        2              2        2      
  \   im (a) + re (a)         im (a) + re (a)   /      im (a) + re (a)         im (a) + re (a)   
$$i \left(- \frac{\left(\operatorname{re}{\left(b\right)} + \operatorname{re}{\left(c\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(b\right)} + \operatorname{im}{\left(c\right)}\right) \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(b\right)} + \operatorname{re}{\left(c\right)}\right) \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(b\right)} + \operatorname{im}{\left(c\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
=
  /(im(b) + im(c))*re(a)   (re(b) + re(c))*im(a)\   (im(b) + im(c))*im(a)   (re(b) + re(c))*re(a)
I*|--------------------- - ---------------------| + --------------------- + ---------------------
  |     2        2              2        2      |        2        2              2        2      
  \   im (a) + re (a)         im (a) + re (a)   /      im (a) + re (a)         im (a) + re (a)   
$$i \left(- \frac{\left(\operatorname{re}{\left(b\right)} + \operatorname{re}{\left(c\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(b\right)} + \operatorname{im}{\left(c\right)}\right) \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(b\right)} + \operatorname{re}{\left(c\right)}\right) \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(b\right)} + \operatorname{im}{\left(c\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
product
  /(im(b) + im(c))*re(a)   (re(b) + re(c))*im(a)\   (im(b) + im(c))*im(a)   (re(b) + re(c))*re(a)
I*|--------------------- - ---------------------| + --------------------- + ---------------------
  |     2        2              2        2      |        2        2              2        2      
  \   im (a) + re (a)         im (a) + re (a)   /      im (a) + re (a)         im (a) + re (a)   
$$i \left(- \frac{\left(\operatorname{re}{\left(b\right)} + \operatorname{re}{\left(c\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(b\right)} + \operatorname{im}{\left(c\right)}\right) \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(b\right)} + \operatorname{re}{\left(c\right)}\right) \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(b\right)} + \operatorname{im}{\left(c\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
=
I*((im(b) + im(c))*re(a) - (re(b) + re(c))*im(a)) + (im(b) + im(c))*im(a) + (re(b) + re(c))*re(a)
-------------------------------------------------------------------------------------------------
                                           2        2                                            
                                         im (a) + re (a)                                         
$$\frac{i \left(- \left(\operatorname{re}{\left(b\right)} + \operatorname{re}{\left(c\right)}\right) \operatorname{im}{\left(a\right)} + \left(\operatorname{im}{\left(b\right)} + \operatorname{im}{\left(c\right)}\right) \operatorname{re}{\left(a\right)}\right) + \left(\operatorname{re}{\left(b\right)} + \operatorname{re}{\left(c\right)}\right) \operatorname{re}{\left(a\right)} + \left(\operatorname{im}{\left(b\right)} + \operatorname{im}{\left(c\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
(i*((im(b) + im(c))*re(a) - (re(b) + re(c))*im(a)) + (im(b) + im(c))*im(a) + (re(b) + re(c))*re(a))/(im(a)^2 + re(a)^2)
Rapid solution [src]
       /(im(b) + im(c))*re(a)   (re(b) + re(c))*im(a)\   (im(b) + im(c))*im(a)   (re(b) + re(c))*re(a)
x1 = I*|--------------------- - ---------------------| + --------------------- + ---------------------
       |     2        2              2        2      |        2        2              2        2      
       \   im (a) + re (a)         im (a) + re (a)   /      im (a) + re (a)         im (a) + re (a)   
$$x_{1} = i \left(- \frac{\left(\operatorname{re}{\left(b\right)} + \operatorname{re}{\left(c\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(b\right)} + \operatorname{im}{\left(c\right)}\right) \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) + \frac{\left(\operatorname{re}{\left(b\right)} + \operatorname{re}{\left(c\right)}\right) \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + \frac{\left(\operatorname{im}{\left(b\right)} + \operatorname{im}{\left(c\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
x1 = i*(-(re(b) + re(c))*im(a)/(re(a)^2 + im(a)^2) + (im(b) + im(c))*re(a)/(re(a)^2 + im(a)^2)) + (re(b) + re(c))*re(a)/(re(a)^2 + im(a)^2) + (im(b) + im(c))*im(a)/(re(a)^2 + im(a)^2)