Mister Exam

Other calculators

a^x-b*x=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 x          
a  - b*x = 0
$$a^{x} - b x = 0$$
The graph
Sum and product of roots [src]
sum
    / /-log(a) \\       / /-log(a) \\
    |W|--------||       |W|--------||
    | \   b    /|       | \   b    /|
- re|-----------| - I*im|-----------|
    \   log(a)  /       \   log(a)  /
$$- \operatorname{re}{\left(\frac{W\left(- \frac{\log{\left(a \right)}}{b}\right)}{\log{\left(a \right)}}\right)} - i \operatorname{im}{\left(\frac{W\left(- \frac{\log{\left(a \right)}}{b}\right)}{\log{\left(a \right)}}\right)}$$
=
    / /-log(a) \\       / /-log(a) \\
    |W|--------||       |W|--------||
    | \   b    /|       | \   b    /|
- re|-----------| - I*im|-----------|
    \   log(a)  /       \   log(a)  /
$$- \operatorname{re}{\left(\frac{W\left(- \frac{\log{\left(a \right)}}{b}\right)}{\log{\left(a \right)}}\right)} - i \operatorname{im}{\left(\frac{W\left(- \frac{\log{\left(a \right)}}{b}\right)}{\log{\left(a \right)}}\right)}$$
product
    / /-log(a) \\       / /-log(a) \\
    |W|--------||       |W|--------||
    | \   b    /|       | \   b    /|
- re|-----------| - I*im|-----------|
    \   log(a)  /       \   log(a)  /
$$- \operatorname{re}{\left(\frac{W\left(- \frac{\log{\left(a \right)}}{b}\right)}{\log{\left(a \right)}}\right)} - i \operatorname{im}{\left(\frac{W\left(- \frac{\log{\left(a \right)}}{b}\right)}{\log{\left(a \right)}}\right)}$$
=
    / /-log(a) \\       / /-log(a) \\
    |W|--------||       |W|--------||
    | \   b    /|       | \   b    /|
- re|-----------| - I*im|-----------|
    \   log(a)  /       \   log(a)  /
$$- \operatorname{re}{\left(\frac{W\left(- \frac{\log{\left(a \right)}}{b}\right)}{\log{\left(a \right)}}\right)} - i \operatorname{im}{\left(\frac{W\left(- \frac{\log{\left(a \right)}}{b}\right)}{\log{\left(a \right)}}\right)}$$
-re(LambertW(-log(a)/b)/log(a)) - i*im(LambertW(-log(a)/b)/log(a))
Rapid solution [src]
         / /-log(a) \\       / /-log(a) \\
         |W|--------||       |W|--------||
         | \   b    /|       | \   b    /|
x1 = - re|-----------| - I*im|-----------|
         \   log(a)  /       \   log(a)  /
$$x_{1} = - \operatorname{re}{\left(\frac{W\left(- \frac{\log{\left(a \right)}}{b}\right)}{\log{\left(a \right)}}\right)} - i \operatorname{im}{\left(\frac{W\left(- \frac{\log{\left(a \right)}}{b}\right)}{\log{\left(a \right)}}\right)}$$
x1 = -re(LambertW(-log(a)/b)/log(a)) - i*im(LambertW(-log(a)/b)/log(a))