a^x-b*x=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Sum and product of roots
[src]
/ /-log(a) \\ / /-log(a) \\
|W|--------|| |W|--------||
| \ b /| | \ b /|
- re|-----------| - I*im|-----------|
\ log(a) / \ log(a) /
$$- \operatorname{re}{\left(\frac{W\left(- \frac{\log{\left(a \right)}}{b}\right)}{\log{\left(a \right)}}\right)} - i \operatorname{im}{\left(\frac{W\left(- \frac{\log{\left(a \right)}}{b}\right)}{\log{\left(a \right)}}\right)}$$
/ /-log(a) \\ / /-log(a) \\
|W|--------|| |W|--------||
| \ b /| | \ b /|
- re|-----------| - I*im|-----------|
\ log(a) / \ log(a) /
$$- \operatorname{re}{\left(\frac{W\left(- \frac{\log{\left(a \right)}}{b}\right)}{\log{\left(a \right)}}\right)} - i \operatorname{im}{\left(\frac{W\left(- \frac{\log{\left(a \right)}}{b}\right)}{\log{\left(a \right)}}\right)}$$
/ /-log(a) \\ / /-log(a) \\
|W|--------|| |W|--------||
| \ b /| | \ b /|
- re|-----------| - I*im|-----------|
\ log(a) / \ log(a) /
$$- \operatorname{re}{\left(\frac{W\left(- \frac{\log{\left(a \right)}}{b}\right)}{\log{\left(a \right)}}\right)} - i \operatorname{im}{\left(\frac{W\left(- \frac{\log{\left(a \right)}}{b}\right)}{\log{\left(a \right)}}\right)}$$
/ /-log(a) \\ / /-log(a) \\
|W|--------|| |W|--------||
| \ b /| | \ b /|
- re|-----------| - I*im|-----------|
\ log(a) / \ log(a) /
$$- \operatorname{re}{\left(\frac{W\left(- \frac{\log{\left(a \right)}}{b}\right)}{\log{\left(a \right)}}\right)} - i \operatorname{im}{\left(\frac{W\left(- \frac{\log{\left(a \right)}}{b}\right)}{\log{\left(a \right)}}\right)}$$
-re(LambertW(-log(a)/b)/log(a)) - i*im(LambertW(-log(a)/b)/log(a))
/ /-log(a) \\ / /-log(a) \\
|W|--------|| |W|--------||
| \ b /| | \ b /|
x1 = - re|-----------| - I*im|-----------|
\ log(a) / \ log(a) /
$$x_{1} = - \operatorname{re}{\left(\frac{W\left(- \frac{\log{\left(a \right)}}{b}\right)}{\log{\left(a \right)}}\right)} - i \operatorname{im}{\left(\frac{W\left(- \frac{\log{\left(a \right)}}{b}\right)}{\log{\left(a \right)}}\right)}$$
x1 = -re(LambertW(-log(a)/b)/log(a)) - i*im(LambertW(-log(a)/b)/log(a))