Mister Exam

Other calculators

9x^2+2x+7=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2              
9*x  + 2*x + 7 = 0
$$\left(9 x^{2} + 2 x\right) + 7 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 9$$
$$b = 2$$
$$c = 7$$
, then
D = b^2 - 4 * a * c = 

(2)^2 - 4 * (9) * (7) = -248

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = - \frac{1}{9} + \frac{\sqrt{62} i}{9}$$
$$x_{2} = - \frac{1}{9} - \frac{\sqrt{62} i}{9}$$
Vieta's Theorem
rewrite the equation
$$\left(9 x^{2} + 2 x\right) + 7 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} + \frac{2 x}{9} + \frac{7}{9} = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = \frac{2}{9}$$
$$q = \frac{c}{a}$$
$$q = \frac{7}{9}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = - \frac{2}{9}$$
$$x_{1} x_{2} = \frac{7}{9}$$
The graph
Rapid solution [src]
               ____
       1   I*\/ 62 
x1 = - - - --------
       9      9    
$$x_{1} = - \frac{1}{9} - \frac{\sqrt{62} i}{9}$$
               ____
       1   I*\/ 62 
x2 = - - + --------
       9      9    
$$x_{2} = - \frac{1}{9} + \frac{\sqrt{62} i}{9}$$
x2 = -1/9 + sqrt(62)*i/9
Sum and product of roots [src]
sum
          ____             ____
  1   I*\/ 62      1   I*\/ 62 
- - - -------- + - - + --------
  9      9         9      9    
$$\left(- \frac{1}{9} - \frac{\sqrt{62} i}{9}\right) + \left(- \frac{1}{9} + \frac{\sqrt{62} i}{9}\right)$$
=
-2/9
$$- \frac{2}{9}$$
product
/          ____\ /          ____\
|  1   I*\/ 62 | |  1   I*\/ 62 |
|- - - --------|*|- - + --------|
\  9      9    / \  9      9    /
$$\left(- \frac{1}{9} - \frac{\sqrt{62} i}{9}\right) \left(- \frac{1}{9} + \frac{\sqrt{62} i}{9}\right)$$
=
7/9
$$\frac{7}{9}$$
7/9
Numerical answer [src]
x1 = -0.111111111111111 + 0.87488976377909*i
x2 = -0.111111111111111 - 0.87488976377909*i
x2 = -0.111111111111111 - 0.87488976377909*i