Mister Exam

Other calculators

(9x-2)^2-(x-17)^2=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
         2           2    
(9*x - 2)  - (x - 17)  = 0
$$- \left(x - 17\right)^{2} + \left(9 x - 2\right)^{2} = 0$$
Detail solution
Expand the expression in the equation
$$- \left(x - 17\right)^{2} + \left(9 x - 2\right)^{2} = 0$$
We get the quadratic equation
$$80 x^{2} - 2 x - 285 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 80$$
$$b = -2$$
$$c = -285$$
, then
D = b^2 - 4 * a * c = 

(-2)^2 - 4 * (80) * (-285) = 91204

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{19}{10}$$
$$x_{2} = - \frac{15}{8}$$
Rapid solution [src]
x1 = -15/8
$$x_{1} = - \frac{15}{8}$$
     19
x2 = --
     10
$$x_{2} = \frac{19}{10}$$
x2 = 19/10
Sum and product of roots [src]
sum
        19
-15/8 + --
        10
$$- \frac{15}{8} + \frac{19}{10}$$
=
1/40
$$\frac{1}{40}$$
product
-15*19
------
 8*10 
$$- \frac{57}{16}$$
=
-57 
----
 16 
$$- \frac{57}{16}$$
-57/16
Numerical answer [src]
x1 = 1.9
x2 = -1.875
x2 = -1.875