Mister Exam

Other calculators

7x^2+18*x+5=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2               
7*x  + 18*x + 5 = 0
$$\left(7 x^{2} + 18 x\right) + 5 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 7$$
$$b = 18$$
$$c = 5$$
, then
D = b^2 - 4 * a * c = 

(18)^2 - 4 * (7) * (5) = 184

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = - \frac{9}{7} + \frac{\sqrt{46}}{7}$$
$$x_{2} = - \frac{9}{7} - \frac{\sqrt{46}}{7}$$
Vieta's Theorem
rewrite the equation
$$\left(7 x^{2} + 18 x\right) + 5 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} + \frac{18 x}{7} + \frac{5}{7} = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = \frac{18}{7}$$
$$q = \frac{c}{a}$$
$$q = \frac{5}{7}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = - \frac{18}{7}$$
$$x_{1} x_{2} = \frac{5}{7}$$
The graph
Sum and product of roots [src]
sum
        ____           ____
  9   \/ 46      9   \/ 46 
- - - ------ + - - + ------
  7     7        7     7   
$$\left(- \frac{9}{7} - \frac{\sqrt{46}}{7}\right) + \left(- \frac{9}{7} + \frac{\sqrt{46}}{7}\right)$$
=
-18/7
$$- \frac{18}{7}$$
product
/        ____\ /        ____\
|  9   \/ 46 | |  9   \/ 46 |
|- - - ------|*|- - + ------|
\  7     7   / \  7     7   /
$$\left(- \frac{9}{7} - \frac{\sqrt{46}}{7}\right) \left(- \frac{9}{7} + \frac{\sqrt{46}}{7}\right)$$
=
5/7
$$\frac{5}{7}$$
5/7
Rapid solution [src]
             ____
       9   \/ 46 
x1 = - - - ------
       7     7   
$$x_{1} = - \frac{9}{7} - \frac{\sqrt{46}}{7}$$
             ____
       9   \/ 46 
x2 = - - + ------
       7     7   
$$x_{2} = - \frac{9}{7} + \frac{\sqrt{46}}{7}$$
x2 = -9/7 + sqrt(46)/7
Numerical answer [src]
x1 = -0.316810002410676
x2 = -2.2546185690179
x2 = -2.2546185690179