Mister Exam

Other calculators

4z^2-20z+26=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2                
4*z  - 20*z + 26 = 0
$$\left(4 z^{2} - 20 z\right) + 26 = 0$$
Detail solution
This equation is of the form
a*z^2 + b*z + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$z_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$z_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 4$$
$$b = -20$$
$$c = 26$$
, then
D = b^2 - 4 * a * c = 

(-20)^2 - 4 * (4) * (26) = -16

Because D<0, then the equation
has no real roots,
but complex roots is exists.
z1 = (-b + sqrt(D)) / (2*a)

z2 = (-b - sqrt(D)) / (2*a)

or
$$z_{1} = \frac{5}{2} + \frac{i}{2}$$
$$z_{2} = \frac{5}{2} - \frac{i}{2}$$
Vieta's Theorem
rewrite the equation
$$\left(4 z^{2} - 20 z\right) + 26 = 0$$
of
$$a z^{2} + b z + c = 0$$
as reduced quadratic equation
$$z^{2} + \frac{b z}{a} + \frac{c}{a} = 0$$
$$z^{2} - 5 z + \frac{13}{2} = 0$$
$$p z + q + z^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = -5$$
$$q = \frac{c}{a}$$
$$q = \frac{13}{2}$$
Vieta Formulas
$$z_{1} + z_{2} = - p$$
$$z_{1} z_{2} = q$$
$$z_{1} + z_{2} = 5$$
$$z_{1} z_{2} = \frac{13}{2}$$
The graph
Rapid solution [src]
     5   I
z1 = - - -
     2   2
$$z_{1} = \frac{5}{2} - \frac{i}{2}$$
     5   I
z2 = - + -
     2   2
$$z_{2} = \frac{5}{2} + \frac{i}{2}$$
z2 = 5/2 + i/2
Sum and product of roots [src]
sum
5   I   5   I
- - - + - + -
2   2   2   2
$$\left(\frac{5}{2} - \frac{i}{2}\right) + \left(\frac{5}{2} + \frac{i}{2}\right)$$
=
5
$$5$$
product
/5   I\ /5   I\
|- - -|*|- + -|
\2   2/ \2   2/
$$\left(\frac{5}{2} - \frac{i}{2}\right) \left(\frac{5}{2} + \frac{i}{2}\right)$$
=
13/2
$$\frac{13}{2}$$
13/2
Numerical answer [src]
z1 = 2.5 + 0.5*i
z2 = 2.5 - 0.5*i
z2 = 2.5 - 0.5*i