Mister Exam

Other calculators


4x-3x^2+2=0

4x-3x^2+2=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
         2        
4*x - 3*x  + 2 = 0
$$- 3 x^{2} + 4 x + 2 = 0$$
Detail solution
This equation is of the form
$$a\ x^2 + b\ x + c = 0$$
A quadratic equation can be solved using the discriminant
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where $D = b^2 - 4 a c$ is the discriminant.
Because
$$a = -3$$
$$b = 4$$
$$c = 2$$
, then
$$D = b^2 - 4\ a\ c = $$
$$4^{2} - \left(-3\right) 4 \cdot 2 = 40$$
Because D > 0, then the equation has two roots.
$$x_1 = \frac{(-b + \sqrt{D})}{2 a}$$
$$x_2 = \frac{(-b - \sqrt{D})}{2 a}$$
or
$$x_{1} = - \frac{\sqrt{10}}{3} + \frac{2}{3}$$
Simplify
$$x_{2} = \frac{2}{3} + \frac{\sqrt{10}}{3}$$
Simplify
Vieta's Theorem
rewrite the equation
$$- 3 x^{2} + 4 x + 2 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} - \frac{4 x}{3} - \frac{2}{3} = 0$$
$$p x + x^{2} + q = 0$$
where
$$p = \frac{b}{a}$$
$$p = - \frac{4}{3}$$
$$q = \frac{c}{a}$$
$$q = - \frac{2}{3}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = \frac{4}{3}$$
$$x_{1} x_{2} = - \frac{2}{3}$$
The graph
Rapid solution [src]
            ____
      2   \/ 10 
x_1 = - - ------
      3     3   
$$x_{1} = - \frac{\sqrt{10}}{3} + \frac{2}{3}$$
            ____
      2   \/ 10 
x_2 = - + ------
      3     3   
$$x_{2} = \frac{2}{3} + \frac{\sqrt{10}}{3}$$
Sum and product of roots [src]
sum
      ____         ____
2   \/ 10    2   \/ 10 
- - ------ + - + ------
3     3      3     3   
$$\left(- \frac{\sqrt{10}}{3} + \frac{2}{3}\right) + \left(\frac{2}{3} + \frac{\sqrt{10}}{3}\right)$$
=
4/3
$$\frac{4}{3}$$
product
      ____         ____
2   \/ 10    2   \/ 10 
- - ------ * - + ------
3     3      3     3   
$$\left(- \frac{\sqrt{10}}{3} + \frac{2}{3}\right) * \left(\frac{2}{3} + \frac{\sqrt{10}}{3}\right)$$
=
-2/3
$$- \frac{2}{3}$$
Numerical answer [src]
x1 = 1.72075922005613
x2 = -0.387425886722793
x2 = -0.387425886722793
The graph
4x-3x^2+2=0 equation