4sin^2x-sinx-6=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
( 4 sin 2 ( x ) − sin ( x ) ) − 6 = 0 \left(4 \sin^{2}{\left(x \right)} - \sin{\left(x \right)}\right) - 6 = 0 ( 4 sin 2 ( x ) − sin ( x ) ) − 6 = 0 transform
4 sin 2 ( x ) − sin ( x ) − 6 = 0 4 \sin^{2}{\left(x \right)} - \sin{\left(x \right)} - 6 = 0 4 sin 2 ( x ) − sin ( x ) − 6 = 0 ( 4 sin 2 ( x ) − sin ( x ) ) − 6 = 0 \left(4 \sin^{2}{\left(x \right)} - \sin{\left(x \right)}\right) - 6 = 0 ( 4 sin 2 ( x ) − sin ( x ) ) − 6 = 0 Do replacement
w = sin ( x ) w = \sin{\left(x \right)} w = sin ( x ) This equation is of the form
a*w^2 + b*w + c = 0 A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
w 1 = D − b 2 a w_{1} = \frac{\sqrt{D} - b}{2 a} w 1 = 2 a D − b w 2 = − D − b 2 a w_{2} = \frac{- \sqrt{D} - b}{2 a} w 2 = 2 a − D − b where D = b^2 - 4*a*c - it is the discriminant.
Because
a = 4 a = 4 a = 4 b = − 1 b = -1 b = − 1 c = − 6 c = -6 c = − 6 , then
D = b^2 - 4 * a * c = (-1)^2 - 4 * (4) * (-6) = 97 Because D > 0, then the equation has two roots.
w1 = (-b + sqrt(D)) / (2*a) w2 = (-b - sqrt(D)) / (2*a) or
w 1 = 1 8 + 97 8 w_{1} = \frac{1}{8} + \frac{\sqrt{97}}{8} w 1 = 8 1 + 8 97 w 2 = 1 8 − 97 8 w_{2} = \frac{1}{8} - \frac{\sqrt{97}}{8} w 2 = 8 1 − 8 97 do backward replacement
sin ( x ) = w \sin{\left(x \right)} = w sin ( x ) = w Given the equation
sin ( x ) = w \sin{\left(x \right)} = w sin ( x ) = w - this is the simplest trigonometric equation
This equation is transformed to
x = 2 π n + asin ( w ) x = 2 \pi n + \operatorname{asin}{\left(w \right)} x = 2 πn + asin ( w ) x = 2 π n − asin ( w ) + π x = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi x = 2 πn − asin ( w ) + π Or
x = 2 π n + asin ( w ) x = 2 \pi n + \operatorname{asin}{\left(w \right)} x = 2 πn + asin ( w ) x = 2 π n − asin ( w ) + π x = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi x = 2 πn − asin ( w ) + π , where n - is a integer
substitute w:
x 1 = 2 π n + asin ( w 1 ) x_{1} = 2 \pi n + \operatorname{asin}{\left(w_{1} \right)} x 1 = 2 πn + asin ( w 1 ) x 1 = 2 π n + asin ( 1 8 + 97 8 ) x_{1} = 2 \pi n + \operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)} x 1 = 2 πn + asin ( 8 1 + 8 97 ) x 1 = 2 π n + asin ( 1 8 + 97 8 ) x_{1} = 2 \pi n + \operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)} x 1 = 2 πn + asin ( 8 1 + 8 97 ) x 2 = 2 π n + asin ( w 2 ) x_{2} = 2 \pi n + \operatorname{asin}{\left(w_{2} \right)} x 2 = 2 πn + asin ( w 2 ) x 2 = 2 π n + asin ( 1 8 − 97 8 ) x_{2} = 2 \pi n + \operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)} x 2 = 2 πn + asin ( 8 1 − 8 97 ) x 2 = 2 π n + asin ( 1 8 − 97 8 ) x_{2} = 2 \pi n + \operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)} x 2 = 2 πn + asin ( 8 1 − 8 97 ) x 3 = 2 π n − asin ( w 1 ) + π x_{3} = 2 \pi n - \operatorname{asin}{\left(w_{1} \right)} + \pi x 3 = 2 πn − asin ( w 1 ) + π x 3 = 2 π n + π − asin ( 1 8 + 97 8 ) x_{3} = 2 \pi n + \pi - \operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)} x 3 = 2 πn + π − asin ( 8 1 + 8 97 ) x 3 = 2 π n + π − asin ( 1 8 + 97 8 ) x_{3} = 2 \pi n + \pi - \operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)} x 3 = 2 πn + π − asin ( 8 1 + 8 97 ) x 4 = 2 π n − asin ( w 2 ) + π x_{4} = 2 \pi n - \operatorname{asin}{\left(w_{2} \right)} + \pi x 4 = 2 πn − asin ( w 2 ) + π x 4 = 2 π n + π − asin ( 1 8 − 97 8 ) x_{4} = 2 \pi n + \pi - \operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)} x 4 = 2 πn + π − asin ( 8 1 − 8 97 ) x 4 = 2 π n + π − asin ( 1 8 − 97 8 ) x_{4} = 2 \pi n + \pi - \operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)} x 4 = 2 πn + π − asin ( 8 1 − 8 97 )
The graph
0 -80 -60 -40 -20 20 40 60 80 -100 100 5 -10
/ / ____\\ / / ____\\
| |1 \/ 97 || | |1 \/ 97 ||
x1 = pi - re|asin|- - ------|| - I*im|asin|- - ------||
\ \8 8 // \ \8 8 //
x 1 = − re ( asin ( 1 8 − 97 8 ) ) + π − i im ( asin ( 1 8 − 97 8 ) ) x_{1} = - \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)} x 1 = − re ( asin ( 8 1 − 8 97 ) ) + π − i im ( asin ( 8 1 − 8 97 ) )
/ / ____\\ / / ____\\
| |1 \/ 97 || | |1 \/ 97 ||
x2 = pi - re|asin|- + ------|| - I*im|asin|- + ------||
\ \8 8 // \ \8 8 //
x 2 = − re ( asin ( 1 8 + 97 8 ) ) + π − i im ( asin ( 1 8 + 97 8 ) ) x_{2} = - \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)} x 2 = − re ( asin ( 8 1 + 8 97 ) ) + π − i im ( asin ( 8 1 + 8 97 ) )
/ / ____\\ / / ____\\
| |1 \/ 97 || | |1 \/ 97 ||
x3 = I*im|asin|- - ------|| + re|asin|- - ------||
\ \8 8 // \ \8 8 //
x 3 = re ( asin ( 1 8 − 97 8 ) ) + i im ( asin ( 1 8 − 97 8 ) ) x_{3} = \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)} x 3 = re ( asin ( 8 1 − 8 97 ) ) + i im ( asin ( 8 1 − 8 97 ) )
/ / ____\\ / / ____\\
| |1 \/ 97 || | |1 \/ 97 ||
x4 = I*im|asin|- + ------|| + re|asin|- + ------||
\ \8 8 // \ \8 8 //
x 4 = re ( asin ( 1 8 + 97 8 ) ) + i im ( asin ( 1 8 + 97 8 ) ) x_{4} = \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)} x 4 = re ( asin ( 8 1 + 8 97 ) ) + i im ( asin ( 8 1 + 8 97 ) )
x4 = re(asin(1/8 + sqrt(97)/8)) + i*im(asin(1/8 + sqrt(97)/8))
Sum and product of roots
[src]
/ / ____\\ / / ____\\ / / ____\\ / / ____\\ / / ____\\ / / ____\\ / / ____\\ / / ____\\
| |1 \/ 97 || | |1 \/ 97 || | |1 \/ 97 || | |1 \/ 97 || | |1 \/ 97 || | |1 \/ 97 || | |1 \/ 97 || | |1 \/ 97 ||
pi - re|asin|- - ------|| - I*im|asin|- - ------|| + pi - re|asin|- + ------|| - I*im|asin|- + ------|| + I*im|asin|- - ------|| + re|asin|- - ------|| + I*im|asin|- + ------|| + re|asin|- + ------||
\ \8 8 // \ \8 8 // \ \8 8 // \ \8 8 // \ \8 8 // \ \8 8 // \ \8 8 // \ \8 8 //
( re ( asin ( 1 8 + 97 8 ) ) + i im ( asin ( 1 8 + 97 8 ) ) ) + ( ( ( − re ( asin ( 1 8 − 97 8 ) ) + π − i im ( asin ( 1 8 − 97 8 ) ) ) + ( − re ( asin ( 1 8 + 97 8 ) ) + π − i im ( asin ( 1 8 + 97 8 ) ) ) ) + ( re ( asin ( 1 8 − 97 8 ) ) + i im ( asin ( 1 8 − 97 8 ) ) ) ) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)}\right) + \left(\left(\left(- \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)}\right) + \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)}\right)\right) + \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)}\right)\right) ( re ( asin ( 8 1 + 8 97 ) ) + i im ( asin ( 8 1 + 8 97 ) ) ) + ( ( ( − re ( asin ( 8 1 − 8 97 ) ) + π − i im ( asin ( 8 1 − 8 97 ) ) ) + ( − re ( asin ( 8 1 + 8 97 ) ) + π − i im ( asin ( 8 1 + 8 97 ) ) ) ) + ( re ( asin ( 8 1 − 8 97 ) ) + i im ( asin ( 8 1 − 8 97 ) ) ) )
/ / / ____\\ / / ____\\\ / / / ____\\ / / ____\\\ / / / ____\\ / / ____\\\ / / / ____\\ / / ____\\\
| | |1 \/ 97 || | |1 \/ 97 ||| | | |1 \/ 97 || | |1 \/ 97 ||| | | |1 \/ 97 || | |1 \/ 97 ||| | | |1 \/ 97 || | |1 \/ 97 |||
|pi - re|asin|- - ------|| - I*im|asin|- - ------|||*|pi - re|asin|- + ------|| - I*im|asin|- + ------|||*|I*im|asin|- - ------|| + re|asin|- - ------|||*|I*im|asin|- + ------|| + re|asin|- + ------|||
\ \ \8 8 // \ \8 8 /// \ \ \8 8 // \ \8 8 /// \ \ \8 8 // \ \8 8 /// \ \ \8 8 // \ \8 8 ///
( − re ( asin ( 1 8 − 97 8 ) ) + π − i im ( asin ( 1 8 − 97 8 ) ) ) ( − re ( asin ( 1 8 + 97 8 ) ) + π − i im ( asin ( 1 8 + 97 8 ) ) ) ( re ( asin ( 1 8 − 97 8 ) ) + i im ( asin ( 1 8 − 97 8 ) ) ) ( re ( asin ( 1 8 + 97 8 ) ) + i im ( asin ( 1 8 + 97 8 ) ) ) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)}\right) ( − re ( asin ( 8 1 − 8 97 ) ) + π − i im ( asin ( 8 1 − 8 97 ) ) ) ( − re ( asin ( 8 1 + 8 97 ) ) + π − i im ( asin ( 8 1 + 8 97 ) ) ) ( re ( asin ( 8 1 − 8 97 ) ) + i im ( asin ( 8 1 − 8 97 ) ) ) ( re ( asin ( 8 1 + 8 97 ) ) + i im ( asin ( 8 1 + 8 97 ) ) )
/ / / ____\\ / / ____\\\ / / / ____\\ / / ____\\\ / / / ____\\ / / ____\\\ / / / ____\\ / / ____\\\
| | |1 \/ 97 || | |1 \/ 97 ||| | | |1 \/ 97 || | |1 \/ 97 ||| | | |1 \/ 97 || | |1 \/ 97 ||| | | |1 \/ 97 || | |1 \/ 97 |||
|I*im|asin|- - ------|| + re|asin|- - ------|||*|I*im|asin|- + ------|| + re|asin|- + ------|||*|-pi + I*im|asin|- - ------|| + re|asin|- - ------|||*|-pi + I*im|asin|- + ------|| + re|asin|- + ------|||
\ \ \8 8 // \ \8 8 /// \ \ \8 8 // \ \8 8 /// \ \ \8 8 // \ \8 8 /// \ \ \8 8 // \ \8 8 ///
( re ( asin ( 1 8 − 97 8 ) ) + i im ( asin ( 1 8 − 97 8 ) ) ) ( re ( asin ( 1 8 + 97 8 ) ) + i im ( asin ( 1 8 + 97 8 ) ) ) ( − π + re ( asin ( 1 8 − 97 8 ) ) + i im ( asin ( 1 8 − 97 8 ) ) ) ( − π + re ( asin ( 1 8 + 97 8 ) ) + i im ( asin ( 1 8 + 97 8 ) ) ) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)}\right) \left(- \pi + \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)}\right) \left(- \pi + \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)}\right) ( re ( asin ( 8 1 − 8 97 ) ) + i im ( asin ( 8 1 − 8 97 ) ) ) ( re ( asin ( 8 1 + 8 97 ) ) + i im ( asin ( 8 1 + 8 97 ) ) ) ( − π + re ( asin ( 8 1 − 8 97 ) ) + i im ( asin ( 8 1 − 8 97 ) ) ) ( − π + re ( asin ( 8 1 + 8 97 ) ) + i im ( asin ( 8 1 + 8 97 ) ) )
(i*im(asin(1/8 - sqrt(97)/8)) + re(asin(1/8 - sqrt(97)/8)))*(i*im(asin(1/8 + sqrt(97)/8)) + re(asin(1/8 + sqrt(97)/8)))*(-pi + i*im(asin(1/8 - sqrt(97)/8)) + re(asin(1/8 - sqrt(97)/8)))*(-pi + i*im(asin(1/8 + sqrt(97)/8)) + re(asin(1/8 + sqrt(97)/8)))
x1 = 4.71238898038469 - 0.456688335075625*i
x2 = 1.5707963267949 + 0.820700680361328*i
x3 = -1.5707963267949 + 0.456688335075625*i
x4 = 1.5707963267949 - 0.820700680361328*i
x4 = 1.5707963267949 - 0.820700680361328*i