Mister Exam

Other calculators

4sin^2x-sinx-6=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
     2                    
4*sin (x) - sin(x) - 6 = 0
(4sin2(x)sin(x))6=0\left(4 \sin^{2}{\left(x \right)} - \sin{\left(x \right)}\right) - 6 = 0
Detail solution
Given the equation
(4sin2(x)sin(x))6=0\left(4 \sin^{2}{\left(x \right)} - \sin{\left(x \right)}\right) - 6 = 0
transform
4sin2(x)sin(x)6=04 \sin^{2}{\left(x \right)} - \sin{\left(x \right)} - 6 = 0
(4sin2(x)sin(x))6=0\left(4 \sin^{2}{\left(x \right)} - \sin{\left(x \right)}\right) - 6 = 0
Do replacement
w=sin(x)w = \sin{\left(x \right)}
This equation is of the form
a*w^2 + b*w + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
w1=Db2aw_{1} = \frac{\sqrt{D} - b}{2 a}
w2=Db2aw_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=4a = 4
b=1b = -1
c=6c = -6
, then
D = b^2 - 4 * a * c = 

(-1)^2 - 4 * (4) * (-6) = 97

Because D > 0, then the equation has two roots.
w1 = (-b + sqrt(D)) / (2*a)

w2 = (-b - sqrt(D)) / (2*a)

or
w1=18+978w_{1} = \frac{1}{8} + \frac{\sqrt{97}}{8}
w2=18978w_{2} = \frac{1}{8} - \frac{\sqrt{97}}{8}
do backward replacement
sin(x)=w\sin{\left(x \right)} = w
Given the equation
sin(x)=w\sin{\left(x \right)} = w
- this is the simplest trigonometric equation
This equation is transformed to
x=2πn+asin(w)x = 2 \pi n + \operatorname{asin}{\left(w \right)}
x=2πnasin(w)+πx = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi
Or
x=2πn+asin(w)x = 2 \pi n + \operatorname{asin}{\left(w \right)}
x=2πnasin(w)+πx = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi
, where n - is a integer
substitute w:
x1=2πn+asin(w1)x_{1} = 2 \pi n + \operatorname{asin}{\left(w_{1} \right)}
x1=2πn+asin(18+978)x_{1} = 2 \pi n + \operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}
x1=2πn+asin(18+978)x_{1} = 2 \pi n + \operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}
x2=2πn+asin(w2)x_{2} = 2 \pi n + \operatorname{asin}{\left(w_{2} \right)}
x2=2πn+asin(18978)x_{2} = 2 \pi n + \operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}
x2=2πn+asin(18978)x_{2} = 2 \pi n + \operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}
x3=2πnasin(w1)+πx_{3} = 2 \pi n - \operatorname{asin}{\left(w_{1} \right)} + \pi
x3=2πn+πasin(18+978)x_{3} = 2 \pi n + \pi - \operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}
x3=2πn+πasin(18+978)x_{3} = 2 \pi n + \pi - \operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}
x4=2πnasin(w2)+πx_{4} = 2 \pi n - \operatorname{asin}{\left(w_{2} \right)} + \pi
x4=2πn+πasin(18978)x_{4} = 2 \pi n + \pi - \operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}
x4=2πn+πasin(18978)x_{4} = 2 \pi n + \pi - \operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}
The graph
0-80-60-40-2020406080-1001005-10
Rapid solution [src]
            /    /      ____\\       /    /      ____\\
            |    |1   \/ 97 ||       |    |1   \/ 97 ||
x1 = pi - re|asin|- - ------|| - I*im|asin|- - ------||
            \    \8     8   //       \    \8     8   //
x1=re(asin(18978))+πiim(asin(18978))x_{1} = - \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)}
            /    /      ____\\       /    /      ____\\
            |    |1   \/ 97 ||       |    |1   \/ 97 ||
x2 = pi - re|asin|- + ------|| - I*im|asin|- + ------||
            \    \8     8   //       \    \8     8   //
x2=re(asin(18+978))+πiim(asin(18+978))x_{2} = - \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)}
         /    /      ____\\     /    /      ____\\
         |    |1   \/ 97 ||     |    |1   \/ 97 ||
x3 = I*im|asin|- - ------|| + re|asin|- - ------||
         \    \8     8   //     \    \8     8   //
x3=re(asin(18978))+iim(asin(18978))x_{3} = \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)}
         /    /      ____\\     /    /      ____\\
         |    |1   \/ 97 ||     |    |1   \/ 97 ||
x4 = I*im|asin|- + ------|| + re|asin|- + ------||
         \    \8     8   //     \    \8     8   //
x4=re(asin(18+978))+iim(asin(18+978))x_{4} = \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)}
x4 = re(asin(1/8 + sqrt(97)/8)) + i*im(asin(1/8 + sqrt(97)/8))
Sum and product of roots [src]
sum
       /    /      ____\\       /    /      ____\\          /    /      ____\\       /    /      ____\\       /    /      ____\\     /    /      ____\\       /    /      ____\\     /    /      ____\\
       |    |1   \/ 97 ||       |    |1   \/ 97 ||          |    |1   \/ 97 ||       |    |1   \/ 97 ||       |    |1   \/ 97 ||     |    |1   \/ 97 ||       |    |1   \/ 97 ||     |    |1   \/ 97 ||
pi - re|asin|- - ------|| - I*im|asin|- - ------|| + pi - re|asin|- + ------|| - I*im|asin|- + ------|| + I*im|asin|- - ------|| + re|asin|- - ------|| + I*im|asin|- + ------|| + re|asin|- + ------||
       \    \8     8   //       \    \8     8   //          \    \8     8   //       \    \8     8   //       \    \8     8   //     \    \8     8   //       \    \8     8   //     \    \8     8   //
(re(asin(18+978))+iim(asin(18+978)))+(((re(asin(18978))+πiim(asin(18978)))+(re(asin(18+978))+πiim(asin(18+978))))+(re(asin(18978))+iim(asin(18978))))\left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)}\right) + \left(\left(\left(- \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)}\right) + \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)}\right)\right) + \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)}\right)\right)
=
2*pi
2π2 \pi
product
/       /    /      ____\\       /    /      ____\\\ /       /    /      ____\\       /    /      ____\\\ /    /    /      ____\\     /    /      ____\\\ /    /    /      ____\\     /    /      ____\\\
|       |    |1   \/ 97 ||       |    |1   \/ 97 ||| |       |    |1   \/ 97 ||       |    |1   \/ 97 ||| |    |    |1   \/ 97 ||     |    |1   \/ 97 ||| |    |    |1   \/ 97 ||     |    |1   \/ 97 |||
|pi - re|asin|- - ------|| - I*im|asin|- - ------|||*|pi - re|asin|- + ------|| - I*im|asin|- + ------|||*|I*im|asin|- - ------|| + re|asin|- - ------|||*|I*im|asin|- + ------|| + re|asin|- + ------|||
\       \    \8     8   //       \    \8     8   /// \       \    \8     8   //       \    \8     8   /// \    \    \8     8   //     \    \8     8   /// \    \    \8     8   //     \    \8     8   ///
(re(asin(18978))+πiim(asin(18978)))(re(asin(18+978))+πiim(asin(18+978)))(re(asin(18978))+iim(asin(18978)))(re(asin(18+978))+iim(asin(18+978)))\left(- \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)}\right)
=
/    /    /      ____\\     /    /      ____\\\ /    /    /      ____\\     /    /      ____\\\ /          /    /      ____\\     /    /      ____\\\ /          /    /      ____\\     /    /      ____\\\
|    |    |1   \/ 97 ||     |    |1   \/ 97 ||| |    |    |1   \/ 97 ||     |    |1   \/ 97 ||| |          |    |1   \/ 97 ||     |    |1   \/ 97 ||| |          |    |1   \/ 97 ||     |    |1   \/ 97 |||
|I*im|asin|- - ------|| + re|asin|- - ------|||*|I*im|asin|- + ------|| + re|asin|- + ------|||*|-pi + I*im|asin|- - ------|| + re|asin|- - ------|||*|-pi + I*im|asin|- + ------|| + re|asin|- + ------|||
\    \    \8     8   //     \    \8     8   /// \    \    \8     8   //     \    \8     8   /// \          \    \8     8   //     \    \8     8   /// \          \    \8     8   //     \    \8     8   ///
(re(asin(18978))+iim(asin(18978)))(re(asin(18+978))+iim(asin(18+978)))(π+re(asin(18978))+iim(asin(18978)))(π+re(asin(18+978))+iim(asin(18+978)))\left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)}\right) \left(- \pi + \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} - \frac{\sqrt{97}}{8} \right)}\right)}\right) \left(- \pi + \operatorname{re}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\frac{1}{8} + \frac{\sqrt{97}}{8} \right)}\right)}\right)
(i*im(asin(1/8 - sqrt(97)/8)) + re(asin(1/8 - sqrt(97)/8)))*(i*im(asin(1/8 + sqrt(97)/8)) + re(asin(1/8 + sqrt(97)/8)))*(-pi + i*im(asin(1/8 - sqrt(97)/8)) + re(asin(1/8 - sqrt(97)/8)))*(-pi + i*im(asin(1/8 + sqrt(97)/8)) + re(asin(1/8 + sqrt(97)/8)))
Numerical answer [src]
x1 = 4.71238898038469 - 0.456688335075625*i
x2 = 1.5707963267949 + 0.820700680361328*i
x3 = -1.5707963267949 + 0.456688335075625*i
x4 = 1.5707963267949 - 0.820700680361328*i
x4 = 1.5707963267949 - 0.820700680361328*i