Mister Exam

Other calculators

3y²+7y-6 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2              
3*y  + 7*y - 6 = 0
$$\left(3 y^{2} + 7 y\right) - 6 = 0$$
Detail solution
This equation is of the form
a*y^2 + b*y + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$y_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$y_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 3$$
$$b = 7$$
$$c = -6$$
, then
D = b^2 - 4 * a * c = 

(7)^2 - 4 * (3) * (-6) = 121

Because D > 0, then the equation has two roots.
y1 = (-b + sqrt(D)) / (2*a)

y2 = (-b - sqrt(D)) / (2*a)

or
$$y_{1} = \frac{2}{3}$$
$$y_{2} = -3$$
Vieta's Theorem
rewrite the equation
$$\left(3 y^{2} + 7 y\right) - 6 = 0$$
of
$$a y^{2} + b y + c = 0$$
as reduced quadratic equation
$$y^{2} + \frac{b y}{a} + \frac{c}{a} = 0$$
$$y^{2} + \frac{7 y}{3} - 2 = 0$$
$$p y + q + y^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = \frac{7}{3}$$
$$q = \frac{c}{a}$$
$$q = -2$$
Vieta Formulas
$$y_{1} + y_{2} = - p$$
$$y_{1} y_{2} = q$$
$$y_{1} + y_{2} = - \frac{7}{3}$$
$$y_{1} y_{2} = -2$$
The graph
Rapid solution [src]
y1 = -3
$$y_{1} = -3$$
y2 = 2/3
$$y_{2} = \frac{2}{3}$$
y2 = 2/3
Sum and product of roots [src]
sum
-3 + 2/3
$$-3 + \frac{2}{3}$$
=
-7/3
$$- \frac{7}{3}$$
product
-3*2
----
 3  
$$- 2$$
=
-2
$$-2$$
-2
Numerical answer [src]
y1 = -3.0
y2 = 0.666666666666667
y2 = 0.666666666666667