Mister Exam

Other calculators

3x^2-75=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2         
3*x  - 75 = 0
3x275=03 x^{2} - 75 = 0
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=3a = 3
b=0b = 0
c=75c = -75
, then
D = b^2 - 4 * a * c = 

(0)^2 - 4 * (3) * (-75) = 900

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
x1=5x_{1} = 5
Simplify
x2=5x_{2} = -5
Simplify
Vieta's Theorem
rewrite the equation
3x275=03 x^{2} - 75 = 0
of
ax2+bx+c=0a x^{2} + b x + c = 0
as reduced quadratic equation
x2+bxa+ca=0x^{2} + \frac{b x}{a} + \frac{c}{a} = 0
x225=0x^{2} - 25 = 0
px+x2+q=0p x + x^{2} + q = 0
where
p=bap = \frac{b}{a}
p=0p = 0
q=caq = \frac{c}{a}
q=25q = -25
Vieta Formulas
x1+x2=px_{1} + x_{2} = - p
x1x2=qx_{1} x_{2} = q
x1+x2=0x_{1} + x_{2} = 0
x1x2=25x_{1} x_{2} = -25
Rapid solution [src]
x1 = -5
x1=5x_{1} = -5
x2 = 5
x2=5x_{2} = 5
Sum and product of roots [src]
sum
0 - 5 + 5
(5+0)+5\left(-5 + 0\right) + 5
=
0
00
product
1*-5*5
1(5)51 \left(-5\right) 5
=
-25
25-25
-25
Numerical answer [src]
x1 = 5.0
x2 = -5.0
x2 = -5.0