Mister Exam

Other calculators

(3x+2)/(4x^2-4x)=(2x+1)/(4x^2-1)-1/x equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 3*x + 2     2*x + 1    1
---------- = -------- - -
   2            2       x
4*x  - 4*x   4*x  - 1    
$$\frac{3 x + 2}{4 x^{2} - 4 x} = \frac{2 x + 1}{4 x^{2} - 1} - \frac{1}{x}$$
The graph
Rapid solution [src]
              ____
     7    I*\/ 31 
x1 = -- - --------
     20      20   
$$x_{1} = \frac{7}{20} - \frac{\sqrt{31} i}{20}$$
              ____
     7    I*\/ 31 
x2 = -- + --------
     20      20   
$$x_{2} = \frac{7}{20} + \frac{\sqrt{31} i}{20}$$
x2 = 7/20 + sqrt(31)*i/20
Sum and product of roots [src]
sum
         ____            ____
7    I*\/ 31    7    I*\/ 31 
-- - -------- + -- + --------
20      20      20      20   
$$\left(\frac{7}{20} - \frac{\sqrt{31} i}{20}\right) + \left(\frac{7}{20} + \frac{\sqrt{31} i}{20}\right)$$
=
7/10
$$\frac{7}{10}$$
product
/         ____\ /         ____\
|7    I*\/ 31 | |7    I*\/ 31 |
|-- - --------|*|-- + --------|
\20      20   / \20      20   /
$$\left(\frac{7}{20} - \frac{\sqrt{31} i}{20}\right) \left(\frac{7}{20} + \frac{\sqrt{31} i}{20}\right)$$
=
1/5
$$\frac{1}{5}$$
1/5
Numerical answer [src]
x1 = 0.35 - 0.278388218141501*i
x2 = 0.35 + 0.278388218141501*i
x2 = 0.35 + 0.278388218141501*i