Mister Exam

3x+2y=4 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
3*x + 2*y = 4
$$3 x + 2 y = 4$$
Detail solution
Given the linear equation:
3*x+2*y = 4

Looking for similar summands in the left part:
2*y + 3*x = 4

Move the summands with the other variables
from left part to right part, we given:
$$2 y = 4 - 3 x$$
Divide both parts of the equation by 2
y = 4 - 3*x / (2)

We get the answer: y = 2 - 3*x/2
The graph
Rapid solution [src]
         3*re(x)   3*I*im(x)
y1 = 2 - ------- - ---------
            2          2    
$$y_{1} = - \frac{3 \operatorname{re}{\left(x\right)}}{2} - \frac{3 i \operatorname{im}{\left(x\right)}}{2} + 2$$
y1 = -3*re(x)/2 - 3*i*im(x)/2 + 2
Sum and product of roots [src]
sum
    3*re(x)   3*I*im(x)
2 - ------- - ---------
       2          2    
$$- \frac{3 \operatorname{re}{\left(x\right)}}{2} - \frac{3 i \operatorname{im}{\left(x\right)}}{2} + 2$$
=
    3*re(x)   3*I*im(x)
2 - ------- - ---------
       2          2    
$$- \frac{3 \operatorname{re}{\left(x\right)}}{2} - \frac{3 i \operatorname{im}{\left(x\right)}}{2} + 2$$
product
    3*re(x)   3*I*im(x)
2 - ------- - ---------
       2          2    
$$- \frac{3 \operatorname{re}{\left(x\right)}}{2} - \frac{3 i \operatorname{im}{\left(x\right)}}{2} + 2$$
=
    3*re(x)   3*I*im(x)
2 - ------- - ---------
       2          2    
$$- \frac{3 \operatorname{re}{\left(x\right)}}{2} - \frac{3 i \operatorname{im}{\left(x\right)}}{2} + 2$$
2 - 3*re(x)/2 - 3*i*im(x)/2