3*x+2*y=2 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
3*x+2*y = 2
Looking for similar summands in the left part:
2*y + 3*x = 2
Move the summands with the other variables
from left part to right part, we given:
$$3 x = 2 - 2 y$$
Divide both parts of the equation by 3
x = 2 - 2*y / (3)
We get the answer: x = 2/3 - 2*y/3
2 2*re(y) 2*I*im(y)
x1 = - - ------- - ---------
3 3 3
$$x_{1} = - \frac{2 \operatorname{re}{\left(y\right)}}{3} - \frac{2 i \operatorname{im}{\left(y\right)}}{3} + \frac{2}{3}$$
x1 = -2*re(y)/3 - 2*i*im(y)/3 + 2/3
Sum and product of roots
[src]
2 2*re(y) 2*I*im(y)
- - ------- - ---------
3 3 3
$$- \frac{2 \operatorname{re}{\left(y\right)}}{3} - \frac{2 i \operatorname{im}{\left(y\right)}}{3} + \frac{2}{3}$$
2 2*re(y) 2*I*im(y)
- - ------- - ---------
3 3 3
$$- \frac{2 \operatorname{re}{\left(y\right)}}{3} - \frac{2 i \operatorname{im}{\left(y\right)}}{3} + \frac{2}{3}$$
2 2*re(y) 2*I*im(y)
- - ------- - ---------
3 3 3
$$- \frac{2 \operatorname{re}{\left(y\right)}}{3} - \frac{2 i \operatorname{im}{\left(y\right)}}{3} + \frac{2}{3}$$
2 2*re(y) 2*I*im(y)
- - ------- - ---------
3 3 3
$$- \frac{2 \operatorname{re}{\left(y\right)}}{3} - \frac{2 i \operatorname{im}{\left(y\right)}}{3} + \frac{2}{3}$$
2/3 - 2*re(y)/3 - 2*i*im(y)/3