Mister Exam

Other calculators

3a^2-21=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2         
3*a  - 21 = 0
$$3 a^{2} - 21 = 0$$
Detail solution
This equation is of the form
a*a^2 + b*a + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$a_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$a_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 3$$
$$b = 0$$
$$c = -21$$
, then
D = b^2 - 4 * a * c = 

(0)^2 - 4 * (3) * (-21) = 252

Because D > 0, then the equation has two roots.
a1 = (-b + sqrt(D)) / (2*a)

a2 = (-b - sqrt(D)) / (2*a)

or
$$a_{1} = \sqrt{7}$$
$$a_{2} = - \sqrt{7}$$
Vieta's Theorem
rewrite the equation
$$3 a^{2} - 21 = 0$$
of
$$a^{3} + a b + c = 0$$
as reduced quadratic equation
$$a^{2} + b + \frac{c}{a} = 0$$
$$a^{2} - 7 = 0$$
$$a^{2} + a p + q = 0$$
where
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = -7$$
Vieta Formulas
$$a_{1} + a_{2} = - p$$
$$a_{1} a_{2} = q$$
$$a_{1} + a_{2} = 0$$
$$a_{1} a_{2} = -7$$
The graph
Rapid solution [src]
        ___
a1 = -\/ 7 
$$a_{1} = - \sqrt{7}$$
       ___
a2 = \/ 7 
$$a_{2} = \sqrt{7}$$
a2 = sqrt(7)
Sum and product of roots [src]
sum
    ___     ___
- \/ 7  + \/ 7 
$$- \sqrt{7} + \sqrt{7}$$
=
0
$$0$$
product
   ___   ___
-\/ 7 *\/ 7 
$$- \sqrt{7} \sqrt{7}$$
=
-7
$$-7$$
-7
Numerical answer [src]
a1 = 2.64575131106459
a2 = -2.64575131106459
a2 = -2.64575131106459