A quadratic equation can be solved using the discriminant. The roots of the quadratic equation: a1=2aD−b a2=2a−D−b where D = b^2 - 4*a*c - it is the discriminant. Because a=3 b=0 c=−21 , then
D = b^2 - 4 * a * c =
(0)^2 - 4 * (3) * (-21) = 252
Because D > 0, then the equation has two roots.
a1 = (-b + sqrt(D)) / (2*a)
a2 = (-b - sqrt(D)) / (2*a)
or a1=7 a2=−7
Vieta's Theorem
rewrite the equation 3a2−21=0 of a3+ab+c=0 as reduced quadratic equation a2+b+ac=0 a2−7=0 a2+ap+q=0 where p=ab p=0 q=ac q=−7 Vieta Formulas a1+a2=−p a1a2=q a1+a2=0 a1a2=−7