Mister Exam

Other calculators

34x=(2x-5)4x-5(x-7) equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
34*x = (2*x - 5)*4*x - 5*(x - 7)
$$34 x = x 4 \left(2 x - 5\right) - 5 \left(x - 7\right)$$
Detail solution
Move right part of the equation to
left part with negative sign.

The equation is transformed from
$$34 x = x 4 \left(2 x - 5\right) - 5 \left(x - 7\right)$$
to
$$34 x + \left(- x 4 \left(2 x - 5\right) + 5 \left(x - 7\right)\right) = 0$$
Expand the expression in the equation
$$34 x + \left(- x 4 \left(2 x - 5\right) + 5 \left(x - 7\right)\right) = 0$$
We get the quadratic equation
$$- 8 x^{2} + 59 x - 35 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = -8$$
$$b = 59$$
$$c = -35$$
, then
D = b^2 - 4 * a * c = 

(59)^2 - 4 * (-8) * (-35) = 2361

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{59}{16} - \frac{\sqrt{2361}}{16}$$
$$x_{2} = \frac{\sqrt{2361}}{16} + \frac{59}{16}$$
The graph
Sum and product of roots [src]
sum
       ______          ______
59   \/ 2361    59   \/ 2361 
-- - -------- + -- + --------
16      16      16      16   
$$\left(\frac{59}{16} - \frac{\sqrt{2361}}{16}\right) + \left(\frac{\sqrt{2361}}{16} + \frac{59}{16}\right)$$
=
59/8
$$\frac{59}{8}$$
product
/       ______\ /       ______\
|59   \/ 2361 | |59   \/ 2361 |
|-- - --------|*|-- + --------|
\16      16   / \16      16   /
$$\left(\frac{59}{16} - \frac{\sqrt{2361}}{16}\right) \left(\frac{\sqrt{2361}}{16} + \frac{59}{16}\right)$$
=
35/8
$$\frac{35}{8}$$
35/8
Rapid solution [src]
            ______
     59   \/ 2361 
x1 = -- - --------
     16      16   
$$x_{1} = \frac{59}{16} - \frac{\sqrt{2361}}{16}$$
            ______
     59   \/ 2361 
x2 = -- + --------
     16      16   
$$x_{2} = \frac{\sqrt{2361}}{16} + \frac{59}{16}$$
x2 = sqrt(2361)/16 + 59/16
Numerical answer [src]
x1 = 6.72438265331409
x2 = 0.650617346685915
x2 = 0.650617346685915