Mister Exam

2ax=6 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
2*a*x = 6
$$2 a x = 6$$
Detail solution
Given the linear equation:
2*a*x = 6

Divide both parts of the equation by 2*a
x = 6 / (2*a)

We get the answer: x = 3/a
The solution of the parametric equation
Given the equation with a parameter:
$$2 a x = 6$$
Коэффициент при x равен
$$2 a$$
then possible cases for a :
$$a < 0$$
$$a = 0$$
Consider all cases in more detail:
With
$$a < 0$$
the equation
$$- 2 x - 6 = 0$$
its solution
$$x = -3$$
With
$$a = 0$$
the equation
$$-6 = 0$$
its solution
no solutions
The graph
Rapid solution [src]
         3*re(a)          3*I*im(a)   
x1 = --------------- - ---------------
       2        2        2        2   
     im (a) + re (a)   im (a) + re (a)
$$x_{1} = \frac{3 \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{3 i \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
x1 = 3*re(a)/(re(a)^2 + im(a)^2) - 3*i*im(a)/(re(a)^2 + im(a)^2)
Sum and product of roots [src]
sum
    3*re(a)          3*I*im(a)   
--------------- - ---------------
  2        2        2        2   
im (a) + re (a)   im (a) + re (a)
$$\frac{3 \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{3 i \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
=
    3*re(a)          3*I*im(a)   
--------------- - ---------------
  2        2        2        2   
im (a) + re (a)   im (a) + re (a)
$$\frac{3 \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{3 i \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
product
    3*re(a)          3*I*im(a)   
--------------- - ---------------
  2        2        2        2   
im (a) + re (a)   im (a) + re (a)
$$\frac{3 \operatorname{re}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{3 i \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
=
3*(-I*im(a) + re(a))
--------------------
    2        2      
  im (a) + re (a)   
$$\frac{3 \left(\operatorname{re}{\left(a\right)} - i \operatorname{im}{\left(a\right)}\right)}{\left(\operatorname{re}{\left(a\right)}\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
3*(-i*im(a) + re(a))/(im(a)^2 + re(a)^2)