Mister Exam

Other calculators

13x-3x^2=-14 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
          2      
13*x - 3*x  = -14
$$- 3 x^{2} + 13 x = -14$$
Detail solution
Move right part of the equation to
left part with negative sign.

The equation is transformed from
$$- 3 x^{2} + 13 x = -14$$
to
$$\left(- 3 x^{2} + 13 x\right) + 14 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = -3$$
$$b = 13$$
$$c = 14$$
, then
D = b^2 - 4 * a * c = 

(13)^2 - 4 * (-3) * (14) = 337

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{13}{6} - \frac{\sqrt{337}}{6}$$
$$x_{2} = \frac{13}{6} + \frac{\sqrt{337}}{6}$$
Vieta's Theorem
rewrite the equation
$$- 3 x^{2} + 13 x = -14$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} - \frac{13 x}{3} - \frac{14}{3} = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = - \frac{13}{3}$$
$$q = \frac{c}{a}$$
$$q = - \frac{14}{3}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = \frac{13}{3}$$
$$x_{1} x_{2} = - \frac{14}{3}$$
The graph
Sum and product of roots [src]
sum
       _____          _____
13   \/ 337    13   \/ 337 
-- - ------- + -- + -------
6       6      6       6   
$$\left(\frac{13}{6} - \frac{\sqrt{337}}{6}\right) + \left(\frac{13}{6} + \frac{\sqrt{337}}{6}\right)$$
=
13/3
$$\frac{13}{3}$$
product
/       _____\ /       _____\
|13   \/ 337 | |13   \/ 337 |
|-- - -------|*|-- + -------|
\6       6   / \6       6   /
$$\left(\frac{13}{6} - \frac{\sqrt{337}}{6}\right) \left(\frac{13}{6} + \frac{\sqrt{337}}{6}\right)$$
=
-14/3
$$- \frac{14}{3}$$
-14/3
Rapid solution [src]
            _____
     13   \/ 337 
x1 = -- - -------
     6       6   
$$x_{1} = \frac{13}{6} - \frac{\sqrt{337}}{6}$$
            _____
     13   \/ 337 
x2 = -- + -------
     6       6   
$$x_{2} = \frac{13}{6} + \frac{\sqrt{337}}{6}$$
x2 = 13/6 + sqrt(337)/6
Numerical answer [src]
x1 = 5.22625995844764
x2 = -0.892926625114303
x2 = -0.892926625114303