Mister Exam

Other calculators


3*x^2-9=0

3*x^2-9=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2        
3*x  - 9 = 0
$$3 x^{2} - 9 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 3$$
$$b = 0$$
$$c = -9$$
, then
D = b^2 - 4 * a * c = 

(0)^2 - 4 * (3) * (-9) = 108

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \sqrt{3}$$
$$x_{2} = - \sqrt{3}$$
Vieta's Theorem
rewrite the equation
$$3 x^{2} - 9 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} - 3 = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = -3$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = 0$$
$$x_{1} x_{2} = -3$$
The graph
Sum and product of roots [src]
sum
    ___     ___
- \/ 3  + \/ 3 
$$- \sqrt{3} + \sqrt{3}$$
=
0
$$0$$
product
   ___   ___
-\/ 3 *\/ 3 
$$- \sqrt{3} \sqrt{3}$$
=
-3
$$-3$$
-3
Rapid solution [src]
        ___
x1 = -\/ 3 
$$x_{1} = - \sqrt{3}$$
       ___
x2 = \/ 3 
$$x_{2} = \sqrt{3}$$
x2 = sqrt(3)
Numerical answer [src]
x1 = -1.73205080756888
x2 = 1.73205080756888
x2 = 1.73205080756888
The graph
3*x^2-9=0 equation