Mister Exam

Other calculators


3*x^2-9=0

3*x^2-9=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2        
3*x  - 9 = 0
3x29=03 x^{2} - 9 = 0
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=3a = 3
b=0b = 0
c=9c = -9
, then
D = b^2 - 4 * a * c = 

(0)^2 - 4 * (3) * (-9) = 108

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
x1=3x_{1} = \sqrt{3}
x2=3x_{2} = - \sqrt{3}
Vieta's Theorem
rewrite the equation
3x29=03 x^{2} - 9 = 0
of
ax2+bx+c=0a x^{2} + b x + c = 0
as reduced quadratic equation
x2+bxa+ca=0x^{2} + \frac{b x}{a} + \frac{c}{a} = 0
x23=0x^{2} - 3 = 0
px+q+x2=0p x + q + x^{2} = 0
where
p=bap = \frac{b}{a}
p=0p = 0
q=caq = \frac{c}{a}
q=3q = -3
Vieta Formulas
x1+x2=px_{1} + x_{2} = - p
x1x2=qx_{1} x_{2} = q
x1+x2=0x_{1} + x_{2} = 0
x1x2=3x_{1} x_{2} = -3
The graph
05-15-10-51015-500500
Sum and product of roots [src]
sum
    ___     ___
- \/ 3  + \/ 3 
3+3- \sqrt{3} + \sqrt{3}
=
0
00
product
   ___   ___
-\/ 3 *\/ 3 
33- \sqrt{3} \sqrt{3}
=
-3
3-3
-3
Rapid solution [src]
        ___
x1 = -\/ 3 
x1=3x_{1} = - \sqrt{3}
       ___
x2 = \/ 3 
x2=3x_{2} = \sqrt{3}
x2 = sqrt(3)
Numerical answer [src]
x1 = -1.73205080756888
x2 = 1.73205080756888
x2 = 1.73205080756888
The graph
3*x^2-9=0 equation