Mister Exam

11x+12y+13z=14a+15b+16c equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
11*x + 12*y + 13*z = 14*a + 15*b + 16*c
$$13 z + \left(11 x + 12 y\right) = 16 c + \left(14 a + 15 b\right)$$
Detail solution
Given the linear equation:
11*x+12*y+13*z = 14*a+15*b+16*c

Looking for similar summands in the left part:
11*x + 12*y + 13*z = 14*a+15*b+16*c

Looking for similar summands in the right part:
11*x + 12*y + 13*z = 14*a + 15*b + 16*c

Move the summands with the other variables
from left part to right part, we given:
$$11 x + 13 z = 14 a + 15 b + 16 c - 12 y$$
Divide both parts of the equation by (11*x + 13*z)/x
x = -12*y + 14*a + 15*b + 16*c / ((11*x + 13*z)/x)

We get the answer: x = -13*z/11 - 12*y/11 + 14*a/11 + 15*b/11 + 16*c/11
The graph
Rapid solution [src]
       13*re(z)   12*re(y)   14*re(a)   15*re(b)   16*re(c)     /  13*im(z)   12*im(y)   14*im(a)   15*im(b)   16*im(c)\
x1 = - -------- - -------- + -------- + -------- + -------- + I*|- -------- - -------- + -------- + -------- + --------|
          11         11         11         11         11        \     11         11         11         11         11   /
$$x_{1} = i \left(\frac{14 \operatorname{im}{\left(a\right)}}{11} + \frac{15 \operatorname{im}{\left(b\right)}}{11} + \frac{16 \operatorname{im}{\left(c\right)}}{11} - \frac{12 \operatorname{im}{\left(y\right)}}{11} - \frac{13 \operatorname{im}{\left(z\right)}}{11}\right) + \frac{14 \operatorname{re}{\left(a\right)}}{11} + \frac{15 \operatorname{re}{\left(b\right)}}{11} + \frac{16 \operatorname{re}{\left(c\right)}}{11} - \frac{12 \operatorname{re}{\left(y\right)}}{11} - \frac{13 \operatorname{re}{\left(z\right)}}{11}$$
x1 = i*(14*im(a)/11 + 15*im(b)/11 + 16*im(c)/11 - 12*im(y)/11 - 13*im(z)/11) + 14*re(a)/11 + 15*re(b)/11 + 16*re(c)/11 - 12*re(y)/11 - 13*re(z)/11
Sum and product of roots [src]
sum
  13*re(z)   12*re(y)   14*re(a)   15*re(b)   16*re(c)     /  13*im(z)   12*im(y)   14*im(a)   15*im(b)   16*im(c)\
- -------- - -------- + -------- + -------- + -------- + I*|- -------- - -------- + -------- + -------- + --------|
     11         11         11         11         11        \     11         11         11         11         11   /
$$i \left(\frac{14 \operatorname{im}{\left(a\right)}}{11} + \frac{15 \operatorname{im}{\left(b\right)}}{11} + \frac{16 \operatorname{im}{\left(c\right)}}{11} - \frac{12 \operatorname{im}{\left(y\right)}}{11} - \frac{13 \operatorname{im}{\left(z\right)}}{11}\right) + \frac{14 \operatorname{re}{\left(a\right)}}{11} + \frac{15 \operatorname{re}{\left(b\right)}}{11} + \frac{16 \operatorname{re}{\left(c\right)}}{11} - \frac{12 \operatorname{re}{\left(y\right)}}{11} - \frac{13 \operatorname{re}{\left(z\right)}}{11}$$
=
  13*re(z)   12*re(y)   14*re(a)   15*re(b)   16*re(c)     /  13*im(z)   12*im(y)   14*im(a)   15*im(b)   16*im(c)\
- -------- - -------- + -------- + -------- + -------- + I*|- -------- - -------- + -------- + -------- + --------|
     11         11         11         11         11        \     11         11         11         11         11   /
$$i \left(\frac{14 \operatorname{im}{\left(a\right)}}{11} + \frac{15 \operatorname{im}{\left(b\right)}}{11} + \frac{16 \operatorname{im}{\left(c\right)}}{11} - \frac{12 \operatorname{im}{\left(y\right)}}{11} - \frac{13 \operatorname{im}{\left(z\right)}}{11}\right) + \frac{14 \operatorname{re}{\left(a\right)}}{11} + \frac{15 \operatorname{re}{\left(b\right)}}{11} + \frac{16 \operatorname{re}{\left(c\right)}}{11} - \frac{12 \operatorname{re}{\left(y\right)}}{11} - \frac{13 \operatorname{re}{\left(z\right)}}{11}$$
product
  13*re(z)   12*re(y)   14*re(a)   15*re(b)   16*re(c)     /  13*im(z)   12*im(y)   14*im(a)   15*im(b)   16*im(c)\
- -------- - -------- + -------- + -------- + -------- + I*|- -------- - -------- + -------- + -------- + --------|
     11         11         11         11         11        \     11         11         11         11         11   /
$$i \left(\frac{14 \operatorname{im}{\left(a\right)}}{11} + \frac{15 \operatorname{im}{\left(b\right)}}{11} + \frac{16 \operatorname{im}{\left(c\right)}}{11} - \frac{12 \operatorname{im}{\left(y\right)}}{11} - \frac{13 \operatorname{im}{\left(z\right)}}{11}\right) + \frac{14 \operatorname{re}{\left(a\right)}}{11} + \frac{15 \operatorname{re}{\left(b\right)}}{11} + \frac{16 \operatorname{re}{\left(c\right)}}{11} - \frac{12 \operatorname{re}{\left(y\right)}}{11} - \frac{13 \operatorname{re}{\left(z\right)}}{11}$$
=
  13*re(z)   12*re(y)   14*re(a)   15*re(b)   16*re(c)   I*(-13*im(z) - 12*im(y) + 14*im(a) + 15*im(b) + 16*im(c))
- -------- - -------- + -------- + -------- + -------- + ---------------------------------------------------------
     11         11         11         11         11                                  11                           
$$\frac{i \left(14 \operatorname{im}{\left(a\right)} + 15 \operatorname{im}{\left(b\right)} + 16 \operatorname{im}{\left(c\right)} - 12 \operatorname{im}{\left(y\right)} - 13 \operatorname{im}{\left(z\right)}\right)}{11} + \frac{14 \operatorname{re}{\left(a\right)}}{11} + \frac{15 \operatorname{re}{\left(b\right)}}{11} + \frac{16 \operatorname{re}{\left(c\right)}}{11} - \frac{12 \operatorname{re}{\left(y\right)}}{11} - \frac{13 \operatorname{re}{\left(z\right)}}{11}$$
-13*re(z)/11 - 12*re(y)/11 + 14*re(a)/11 + 15*re(b)/11 + 16*re(c)/11 + i*(-13*im(z) - 12*im(y) + 14*im(a) + 15*im(b) + 16*im(c))/11