Mister Exam

Other calculators

  • How to use it?

  • Differential equation:
  • Equation y'+y=
  • Equation y''-y=(e^-x)(x+1)
  • Equation y''=1/x
  • Equation y+y'=e^x*y^2
  • Identical expressions

  • y''-y*((pi+ two *pi*n)/ two *a)^ two =(four *q)/(pi+ two *pi*n)
  • y two strokes of the second (2nd) order minus y multiply by (( Pi plus 2 multiply by Pi multiply by n) divide by 2 multiply by a) squared equally (4 multiply by q) divide by ( Pi plus 2 multiply by Pi multiply by n)
  • y two strokes of the second (2nd) order minus y multiply by (( Pi plus two multiply by Pi multiply by n) divide by two multiply by a) to the power of two equally (four multiply by q) divide by ( Pi plus two multiply by Pi multiply by n)
  • y''-y*((pi+2*pi*n)/2*a)2=(4*q)/(pi+2*pi*n)
  • y''-y*pi+2*pi*n/2*a2=4*q/pi+2*pi*n
  • y''-y*((pi+2*pi*n)/2*a)²=(4*q)/(pi+2*pi*n)
  • y''-y*((pi+2*pi*n)/2*a) to the power of 2=(4*q)/(pi+2*pi*n)
  • y''-y((pi+2pin)/2a)^2=(4q)/(pi+2pin)
  • y''-y((pi+2pin)/2a)2=(4q)/(pi+2pin)
  • y''-ypi+2pin/2a2=4q/pi+2pin
  • y''-ypi+2pin/2a^2=4q/pi+2pin
  • y''-y*((pi+2*pi*n) divide by 2*a)^2=(4*q) divide by (pi+2*pi*n)
  • Similar expressions

  • y''+y*((pi+2*pi*n)/2*a)^2=(4*q)/(pi+2*pi*n)
  • y''-y*((pi+2*pi*n)/2*a)^2=(4*q)/(pi-2*pi*n)
  • y''-y*((pi-2*pi*n)/2*a)^2=(4*q)/(pi+2*pi*n)

Differential equation y''-y*((pi+2*pi*n)/2*a)^2=(4*q)/(pi+2*pi*n)

The teacher will be very surprised to see your correct solution 😉

v

For Cauchy problem:

y() =
y'() =
y''() =
y'''() =
y''''() =

The graph:

from to