Mister Exam

Derivative of ze^z

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   z
z*e 
zezz e^{z}
d /   z\
--\z*e /
dz      
ddzzez\frac{d}{d z} z e^{z}
Detail solution
  1. Apply the product rule:

    ddzf(z)g(z)=f(z)ddzg(z)+g(z)ddzf(z)\frac{d}{d z} f{\left(z \right)} g{\left(z \right)} = f{\left(z \right)} \frac{d}{d z} g{\left(z \right)} + g{\left(z \right)} \frac{d}{d z} f{\left(z \right)}

    f(z)=zf{\left(z \right)} = z; to find ddzf(z)\frac{d}{d z} f{\left(z \right)}:

    1. Apply the power rule: zz goes to 11

    g(z)=ezg{\left(z \right)} = e^{z}; to find ddzg(z)\frac{d}{d z} g{\left(z \right)}:

    1. The derivative of eze^{z} is itself.

    The result is: zez+ezz e^{z} + e^{z}

  2. Now simplify:

    (z+1)ez\left(z + 1\right) e^{z}


The answer is:

(z+1)ez\left(z + 1\right) e^{z}

The graph
02468-8-6-4-2-1010-250000250000
The first derivative [src]
 z      z
e  + z*e 
zez+ezz e^{z} + e^{z}
The second derivative [src]
         z
(2 + z)*e 
(z+2)ez\left(z + 2\right) e^{z}
The third derivative [src]
         z
(3 + z)*e 
(z+3)ez\left(z + 3\right) e^{z}
The graph
Derivative of ze^z