z z*e
d / z\ --\z*e / dz
Apply the product rule:
f(z)=zf{\left(z \right)} = zf(z)=z; to find ddzf(z)\frac{d}{d z} f{\left(z \right)}dzdf(z):
Apply the power rule: zzz goes to 111
g(z)=ezg{\left(z \right)} = e^{z}g(z)=ez; to find ddzg(z)\frac{d}{d z} g{\left(z \right)}dzdg(z):
The derivative of eze^{z}ez is itself.
The result is: zez+ezz e^{z} + e^{z}zez+ez
Now simplify:
The answer is:
z z e + z*e
z (2 + z)*e
z (3 + z)*e