Mister Exam

Other calculators


z*cos(z/(z+1))

Derivative of z*cos(z/(z+1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  z  \
z*cos|-----|
     \z + 1/
$$z \cos{\left(\frac{z}{z + 1} \right)}$$
z*cos(z/(z + 1))
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Apply the power rule: goes to

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. Apply the power rule: goes to

          The result is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    /  1        z    \    /  z  \      /  z  \
- z*|----- - --------|*sin|-----| + cos|-----|
    |z + 1          2|    \z + 1/      \z + 1/
    \        (z + 1) /                        
$$- z \left(- \frac{z}{\left(z + 1\right)^{2}} + \frac{1}{z + 1}\right) \sin{\left(\frac{z}{z + 1} \right)} + \cos{\left(\frac{z}{z + 1} \right)}$$
The second derivative [src]
             /                 /     /  z  \   /       z  \    /  z  \\\
             |               z*|2*sin|-----| + |-1 + -----|*cos|-----|||
/       z  \ |     /  z  \     \     \1 + z/   \     1 + z/    \1 + z//|
|-1 + -----|*|2*sin|-----| - ------------------------------------------|
\     1 + z/ \     \1 + z/                     1 + z                   /
------------------------------------------------------------------------
                                 1 + z                                  
$$\frac{\left(\frac{z}{z + 1} - 1\right) \left(- \frac{z \left(\left(\frac{z}{z + 1} - 1\right) \cos{\left(\frac{z}{z + 1} \right)} + 2 \sin{\left(\frac{z}{z + 1} \right)}\right)}{z + 1} + 2 \sin{\left(\frac{z}{z + 1} \right)}\right)}{z + 1}$$
The third derivative [src]
             /                                               /                           2                                       \\
             |                                               |     /  z  \   /       z  \     /  z  \     /       z  \    /  z  \||
             |                                             z*|6*sin|-----| - |-1 + -----| *sin|-----| + 6*|-1 + -----|*cos|-----|||
/       z  \ |       /  z  \     /       z  \    /  z  \     \     \1 + z/   \     1 + z/     \1 + z/     \     1 + z/    \1 + z//|
|-1 + -----|*|- 6*sin|-----| - 3*|-1 + -----|*cos|-----| + -----------------------------------------------------------------------|
\     1 + z/ \       \1 + z/     \     1 + z/    \1 + z/                                    1 + z                                 /
-----------------------------------------------------------------------------------------------------------------------------------
                                                                     2                                                             
                                                              (1 + z)                                                              
$$\frac{\left(\frac{z}{z + 1} - 1\right) \left(\frac{z \left(- \left(\frac{z}{z + 1} - 1\right)^{2} \sin{\left(\frac{z}{z + 1} \right)} + 6 \left(\frac{z}{z + 1} - 1\right) \cos{\left(\frac{z}{z + 1} \right)} + 6 \sin{\left(\frac{z}{z + 1} \right)}\right)}{z + 1} - 3 \left(\frac{z}{z + 1} - 1\right) \cos{\left(\frac{z}{z + 1} \right)} - 6 \sin{\left(\frac{z}{z + 1} \right)}\right)}{\left(z + 1\right)^{2}}$$
The graph
Derivative of z*cos(z/(z+1))