/ z \ z*cos|-----| \z + 1/
z*cos(z/(z + 1))
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Apply the power rule: goes to
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
/ 1 z \ / z \ / z \ - z*|----- - --------|*sin|-----| + cos|-----| |z + 1 2| \z + 1/ \z + 1/ \ (z + 1) /
/ / / z \ / z \ / z \\\ | z*|2*sin|-----| + |-1 + -----|*cos|-----||| / z \ | / z \ \ \1 + z/ \ 1 + z/ \1 + z//| |-1 + -----|*|2*sin|-----| - ------------------------------------------| \ 1 + z/ \ \1 + z/ 1 + z / ------------------------------------------------------------------------ 1 + z
/ / 2 \\ | | / z \ / z \ / z \ / z \ / z \|| | z*|6*sin|-----| - |-1 + -----| *sin|-----| + 6*|-1 + -----|*cos|-----||| / z \ | / z \ / z \ / z \ \ \1 + z/ \ 1 + z/ \1 + z/ \ 1 + z/ \1 + z//| |-1 + -----|*|- 6*sin|-----| - 3*|-1 + -----|*cos|-----| + -----------------------------------------------------------------------| \ 1 + z/ \ \1 + z/ \ 1 + z/ \1 + z/ 1 + z / ----------------------------------------------------------------------------------------------------------------------------------- 2 (1 + z)