Mister Exam

Other calculators


(z-2pi)^2/(cos(z)-1)

Derivative of (z-2pi)^2/(cos(z)-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          2
(z - 2*pi) 
-----------
 cos(z) - 1
$$\frac{\left(z - 2 \pi\right)^{2}}{\cos{\left(z \right)} - 1}$$
(z - 2*pi)^2/(cos(z) - 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of cosine is negative sine:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                        2       
-4*pi + 2*z   (z - 2*pi) *sin(z)
----------- + ------------------
 cos(z) - 1                 2   
                (cos(z) - 1)    
$$\frac{\left(z - 2 \pi\right)^{2} \sin{\left(z \right)}}{\left(\cos{\left(z \right)} - 1\right)^{2}} + \frac{2 z - 4 \pi}{\cos{\left(z \right)} - 1}$$
The second derivative [src]
                /      2             \                      
              2 | 2*sin (z)          |                      
    (z - 2*pi) *|----------- + cos(z)|                      
                \-1 + cos(z)         /   4*(z - 2*pi)*sin(z)
2 + ---------------------------------- + -------------------
               -1 + cos(z)                   -1 + cos(z)    
------------------------------------------------------------
                        -1 + cos(z)                         
$$\frac{\frac{\left(z - 2 \pi\right)^{2} \left(\cos{\left(z \right)} + \frac{2 \sin^{2}{\left(z \right)}}{\cos{\left(z \right)} - 1}\right)}{\cos{\left(z \right)} - 1} + \frac{4 \left(z - 2 \pi\right) \sin{\left(z \right)}}{\cos{\left(z \right)} - 1} + 2}{\cos{\left(z \right)} - 1}$$
The third derivative [src]
                        /      2             \               /                          2      \       
                        | 2*sin (z)          |             2 |       6*cos(z)      6*sin (z)   |       
6*sin(z) + 6*(z - 2*pi)*|----------- + cos(z)| + (z - 2*pi) *|-1 + ----------- + --------------|*sin(z)
                        \-1 + cos(z)         /               |     -1 + cos(z)                2|       
                                                             \                   (-1 + cos(z)) /       
-------------------------------------------------------------------------------------------------------
                                                          2                                            
                                             (-1 + cos(z))                                             
$$\frac{\left(z - 2 \pi\right)^{2} \left(-1 + \frac{6 \cos{\left(z \right)}}{\cos{\left(z \right)} - 1} + \frac{6 \sin^{2}{\left(z \right)}}{\left(\cos{\left(z \right)} - 1\right)^{2}}\right) \sin{\left(z \right)} + 6 \left(z - 2 \pi\right) \left(\cos{\left(z \right)} + \frac{2 \sin^{2}{\left(z \right)}}{\cos{\left(z \right)} - 1}\right) + 6 \sin{\left(z \right)}}{\left(\cos{\left(z \right)} - 1\right)^{2}}$$
The graph
Derivative of (z-2pi)^2/(cos(z)-1)