Mister Exam

Derivative of z=arcsiny*lny

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
asin(y)*log(y)
$$\log{\left(y \right)} \operatorname{asin}{\left(y \right)}$$
asin(y)*log(y)
The graph
The first derivative [src]
asin(y)      log(y)  
------- + -----------
   y         ________
            /      2 
          \/  1 - y  
$$\frac{\log{\left(y \right)}}{\sqrt{1 - y^{2}}} + \frac{\operatorname{asin}{\left(y \right)}}{y}$$
The second derivative [src]
  asin(y)         2           y*log(y) 
- ------- + ------------- + -----------
      2          ________           3/2
     y          /      2    /     2\   
            y*\/  1 - y     \1 - y /   
$$\frac{y \log{\left(y \right)}}{\left(1 - y^{2}\right)^{\frac{3}{2}}} + \frac{2}{y \sqrt{1 - y^{2}}} - \frac{\operatorname{asin}{\left(y \right)}}{y^{2}}$$
The third derivative [src]
                                           /          2 \       
                                           |       3*y  |       
                                           |-1 + -------|*log(y)
                                           |           2|       
     3              3          2*asin(y)   \     -1 + y /       
----------- - -------------- + --------- - ---------------------
        3/2         ________        3                   3/2     
/     2\       2   /      2        y            /     2\        
\1 - y /      y *\/  1 - y                      \1 - y /        
$$- \frac{\left(\frac{3 y^{2}}{y^{2} - 1} - 1\right) \log{\left(y \right)}}{\left(1 - y^{2}\right)^{\frac{3}{2}}} + \frac{3}{\left(1 - y^{2}\right)^{\frac{3}{2}}} - \frac{3}{y^{2} \sqrt{1 - y^{2}}} + \frac{2 \operatorname{asin}{\left(y \right)}}{y^{3}}$$
The graph
Derivative of z=arcsiny*lny