Mister Exam

Derivative of ylny-y

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
y*log(y) - y
ylog(y)yy \log{\left(y \right)} - y
d               
--(y*log(y) - y)
dy              
ddy(ylog(y)y)\frac{d}{d y} \left(y \log{\left(y \right)} - y\right)
Detail solution
  1. Differentiate ylog(y)yy \log{\left(y \right)} - y term by term:

    1. Apply the product rule:

      ddyf(y)g(y)=f(y)ddyg(y)+g(y)ddyf(y)\frac{d}{d y} f{\left(y \right)} g{\left(y \right)} = f{\left(y \right)} \frac{d}{d y} g{\left(y \right)} + g{\left(y \right)} \frac{d}{d y} f{\left(y \right)}

      f(y)=yf{\left(y \right)} = y; to find ddyf(y)\frac{d}{d y} f{\left(y \right)}:

      1. Apply the power rule: yy goes to 11

      g(y)=log(y)g{\left(y \right)} = \log{\left(y \right)}; to find ddyg(y)\frac{d}{d y} g{\left(y \right)}:

      1. The derivative of log(y)\log{\left(y \right)} is 1y\frac{1}{y}.

      The result is: log(y)+1\log{\left(y \right)} + 1

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: yy goes to 11

      So, the result is: 1-1

    The result is: log(y)\log{\left(y \right)}


The answer is:

log(y)\log{\left(y \right)}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
log(y)
log(y)\log{\left(y \right)}
The second derivative [src]
1
-
y
1y\frac{1}{y}
The third derivative [src]
-1 
---
  2
 y 
1y2- \frac{1}{y^{2}}
The graph
Derivative of ylny-y