Mister Exam

Derivative of y(x)=5sin2x-2ctg5x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
5*sin(2*x) - 2*cot(5*x)
5sin(2x)2cot(5x)5 \sin{\left(2 x \right)} - 2 \cot{\left(5 x \right)}
d                          
--(5*sin(2*x) - 2*cot(5*x))
dx                         
ddx(5sin(2x)2cot(5x))\frac{d}{d x} \left(5 \sin{\left(2 x \right)} - 2 \cot{\left(5 x \right)}\right)
Detail solution
  1. Differentiate 5sin(2x)2cot(5x)5 \sin{\left(2 x \right)} - 2 \cot{\left(5 x \right)} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=2xu = 2 x.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        The result of the chain rule is:

        2cos(2x)2 \cos{\left(2 x \right)}

      So, the result is: 10cos(2x)10 \cos{\left(2 x \right)}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. There are multiple ways to do this derivative.

          Method #1

          1. Rewrite the function to be differentiated:

            cot(5x)=1tan(5x)\cot{\left(5 x \right)} = \frac{1}{\tan{\left(5 x \right)}}

          2. Let u=tan(5x)u = \tan{\left(5 x \right)}.

          3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

          4. Then, apply the chain rule. Multiply by ddxtan(5x)\frac{d}{d x} \tan{\left(5 x \right)}:

            1. Rewrite the function to be differentiated:

              tan(5x)=sin(5x)cos(5x)\tan{\left(5 x \right)} = \frac{\sin{\left(5 x \right)}}{\cos{\left(5 x \right)}}

            2. Apply the quotient rule, which is:

              ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

              f(x)=sin(5x)f{\left(x \right)} = \sin{\left(5 x \right)} and g(x)=cos(5x)g{\left(x \right)} = \cos{\left(5 x \right)}.

              To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

              1. Let u=5xu = 5 x.

              2. The derivative of sine is cosine:

                ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

              3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

                1. The derivative of a constant times a function is the constant times the derivative of the function.

                  1. Apply the power rule: xx goes to 11

                  So, the result is: 55

                The result of the chain rule is:

                5cos(5x)5 \cos{\left(5 x \right)}

              To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

              1. Let u=5xu = 5 x.

              2. The derivative of cosine is negative sine:

                dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

              3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

                1. The derivative of a constant times a function is the constant times the derivative of the function.

                  1. Apply the power rule: xx goes to 11

                  So, the result is: 55

                The result of the chain rule is:

                5sin(5x)- 5 \sin{\left(5 x \right)}

              Now plug in to the quotient rule:

              5sin2(5x)+5cos2(5x)cos2(5x)\frac{5 \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}}{\cos^{2}{\left(5 x \right)}}

            The result of the chain rule is:

            5sin2(5x)+5cos2(5x)cos2(5x)tan2(5x)- \frac{5 \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}}{\cos^{2}{\left(5 x \right)} \tan^{2}{\left(5 x \right)}}

          Method #2

          1. Rewrite the function to be differentiated:

            cot(5x)=cos(5x)sin(5x)\cot{\left(5 x \right)} = \frac{\cos{\left(5 x \right)}}{\sin{\left(5 x \right)}}

          2. Apply the quotient rule, which is:

            ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

            f(x)=cos(5x)f{\left(x \right)} = \cos{\left(5 x \right)} and g(x)=sin(5x)g{\left(x \right)} = \sin{\left(5 x \right)}.

            To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

            1. Let u=5xu = 5 x.

            2. The derivative of cosine is negative sine:

              dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

            3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: xx goes to 11

                So, the result is: 55

              The result of the chain rule is:

              5sin(5x)- 5 \sin{\left(5 x \right)}

            To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

            1. Let u=5xu = 5 x.

            2. The derivative of sine is cosine:

              ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

            3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: xx goes to 11

                So, the result is: 55

              The result of the chain rule is:

              5cos(5x)5 \cos{\left(5 x \right)}

            Now plug in to the quotient rule:

            5sin2(5x)5cos2(5x)sin2(5x)\frac{- 5 \sin^{2}{\left(5 x \right)} - 5 \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}}

        So, the result is: 2(5sin2(5x)+5cos2(5x))cos2(5x)tan2(5x)- \frac{2 \cdot \left(5 \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}\right)}{\cos^{2}{\left(5 x \right)} \tan^{2}{\left(5 x \right)}}

      So, the result is: 2(5sin2(5x)+5cos2(5x))cos2(5x)tan2(5x)\frac{2 \cdot \left(5 \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}\right)}{\cos^{2}{\left(5 x \right)} \tan^{2}{\left(5 x \right)}}

    The result is: 2(5sin2(5x)+5cos2(5x))cos2(5x)tan2(5x)+10cos(2x)\frac{2 \cdot \left(5 \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}\right)}{\cos^{2}{\left(5 x \right)} \tan^{2}{\left(5 x \right)}} + 10 \cos{\left(2 x \right)}

  2. Now simplify:

    10cos(2x)+201cos(10x)10 \cos{\left(2 x \right)} + \frac{20}{1 - \cos{\left(10 x \right)}}


The answer is:

10cos(2x)+201cos(10x)10 \cos{\left(2 x \right)} + \frac{20}{1 - \cos{\left(10 x \right)}}

The graph
02468-8-6-4-2-1010-500010000
The first derivative [src]
           2                   
10 + 10*cot (5*x) + 10*cos(2*x)
10cos(2x)+10cot2(5x)+1010 \cos{\left(2 x \right)} + 10 \cot^{2}{\left(5 x \right)} + 10
The second derivative [src]
    /  /       2     \                    \
-20*\5*\1 + cot (5*x)/*cot(5*x) + sin(2*x)/
20(5(cot2(5x)+1)cot(5x)+sin(2x))- 20 \cdot \left(5 \left(\cot^{2}{\left(5 x \right)} + 1\right) \cot{\left(5 x \right)} + \sin{\left(2 x \right)}\right)
The third derivative [src]
   /                                2                               \
   |                 /       2     \          2      /       2     \|
20*\-2*cos(2*x) + 25*\1 + cot (5*x)/  + 50*cot (5*x)*\1 + cot (5*x)//
20(25(cot2(5x)+1)2+50(cot2(5x)+1)cot2(5x)2cos(2x))20 \cdot \left(25 \left(\cot^{2}{\left(5 x \right)} + 1\right)^{2} + 50 \left(\cot^{2}{\left(5 x \right)} + 1\right) \cot^{2}{\left(5 x \right)} - 2 \cos{\left(2 x \right)}\right)
The graph
Derivative of y(x)=5sin2x-2ctg5x