Mister Exam

Derivative of y^y

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 y
y 
$$y^{y}$$
y^y
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is


The answer is:

The graph
The first derivative [src]
 y             
y *(1 + log(y))
$$y^{y} \left(\log{\left(y \right)} + 1\right)$$
The second derivative [src]
 y /1               2\
y *|- + (1 + log(y)) |
   \y                /
$$y^{y} \left(\left(\log{\left(y \right)} + 1\right)^{2} + \frac{1}{y}\right)$$
The third derivative [src]
 y /            3   1    3*(1 + log(y))\
y *|(1 + log(y))  - -- + --------------|
   |                 2         y       |
   \                y                  /
$$y^{y} \left(\left(\log{\left(y \right)} + 1\right)^{3} + \frac{3 \left(\log{\left(y \right)} + 1\right)}{y} - \frac{1}{y^{2}}\right)$$
The graph
Derivative of y^y