Mister Exam

Derivative of y^y

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 y
y 
yyy^{y}
y^y
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is

    yy(log(y)+1)y^{y} \left(\log{\left(y \right)} + 1\right)


The answer is:

yy(log(y)+1)y^{y} \left(\log{\left(y \right)} + 1\right)

The graph
02468-8-6-4-2-1010-5000000000050000000000
The first derivative [src]
 y             
y *(1 + log(y))
yy(log(y)+1)y^{y} \left(\log{\left(y \right)} + 1\right)
The second derivative [src]
 y /1               2\
y *|- + (1 + log(y)) |
   \y                /
yy((log(y)+1)2+1y)y^{y} \left(\left(\log{\left(y \right)} + 1\right)^{2} + \frac{1}{y}\right)
The third derivative [src]
 y /            3   1    3*(1 + log(y))\
y *|(1 + log(y))  - -- + --------------|
   |                 2         y       |
   \                y                  /
yy((log(y)+1)3+3(log(y)+1)y1y2)y^{y} \left(\left(\log{\left(y \right)} + 1\right)^{3} + \frac{3 \left(\log{\left(y \right)} + 1\right)}{y} - \frac{1}{y^{2}}\right)
The graph
Derivative of y^y