Mister Exam

Derivative of y^ln(y)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 log(y)
y      
$$y^{\log{\left(y \right)}}$$
y^log(y)
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is


The answer is:

The graph
The first derivative [src]
   log(y)       
2*y      *log(y)
----------------
       y        
$$\frac{2 y^{\log{\left(y \right)}} \log{\left(y \right)}}{y}$$
The second derivative [src]
   log(y) /                  2   \
2*y      *\1 - log(y) + 2*log (y)/
----------------------------------
                 2                
                y                 
$$\frac{2 y^{\log{\left(y \right)}} \left(2 \log{\left(y \right)}^{2} - \log{\left(y \right)} + 1\right)}{y^{2}}$$
The third derivative [src]
   log(y) /          2           3              \
2*y      *\-3 - 6*log (y) + 4*log (y) + 8*log(y)/
-------------------------------------------------
                         3                       
                        y                        
$$\frac{2 y^{\log{\left(y \right)}} \left(4 \log{\left(y \right)}^{3} - 6 \log{\left(y \right)}^{2} + 8 \log{\left(y \right)} - 3\right)}{y^{3}}$$
The graph
Derivative of y^ln(y)