Mister Exam

Derivative of y^ln(y)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 log(y)
y      
ylog(y)y^{\log{\left(y \right)}}
y^log(y)
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is

    (log(log(y))+1)log(y)log(y)\left(\log{\left(\log{\left(y \right)} \right)} + 1\right) \log{\left(y \right)}^{\log{\left(y \right)}}


The answer is:

(log(log(y))+1)log(y)log(y)\left(\log{\left(\log{\left(y \right)} \right)} + 1\right) \log{\left(y \right)}^{\log{\left(y \right)}}

The graph
02468-8-6-4-2-1010-1000010000
The first derivative [src]
   log(y)       
2*y      *log(y)
----------------
       y        
2ylog(y)log(y)y\frac{2 y^{\log{\left(y \right)}} \log{\left(y \right)}}{y}
The second derivative [src]
   log(y) /                  2   \
2*y      *\1 - log(y) + 2*log (y)/
----------------------------------
                 2                
                y                 
2ylog(y)(2log(y)2log(y)+1)y2\frac{2 y^{\log{\left(y \right)}} \left(2 \log{\left(y \right)}^{2} - \log{\left(y \right)} + 1\right)}{y^{2}}
The third derivative [src]
   log(y) /          2           3              \
2*y      *\-3 - 6*log (y) + 4*log (y) + 8*log(y)/
-------------------------------------------------
                         3                       
                        y                        
2ylog(y)(4log(y)36log(y)2+8log(y)3)y3\frac{2 y^{\log{\left(y \right)}} \left(4 \log{\left(y \right)}^{3} - 6 \log{\left(y \right)}^{2} + 8 \log{\left(y \right)} - 3\right)}{y^{3}}
The graph
Derivative of y^ln(y)