/2 - x\ x*log|-----| \5 + x/
x*log((2 - x)/(5 + x))
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
/ 1 2 - x \ x*(5 + x)*|- ----- - --------| | 5 + x 2| \ (5 + x) / /2 - x\ ------------------------------ + log|-----| 2 - x \5 + x/
/ -2 + x\ / / 1 1 \\ |-1 + ------|*|-2 + x*|------ + -----|| \ 5 + x / \ \-2 + x 5 + x// --------------------------------------- -2 + x
/ -2 + x\ / 3 3 / 1 1 1 \\ |-1 + ------|*|------ + ----- - 2*x*|--------- + -------- + ----------------|| \ 5 + x / |-2 + x 5 + x | 2 2 (-2 + x)*(5 + x)|| \ \(-2 + x) (5 + x) // ------------------------------------------------------------------------------ -2 + x