Mister Exam

Other calculators


y=xln((2-x)/(5+x))

Derivative of y=xln((2-x)/(5+x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /2 - x\
x*log|-----|
     \5 + x/
$$x \log{\left(\frac{2 - x}{x + 5} \right)}$$
x*log((2 - x)/(5 + x))
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. Apply the power rule: goes to

          The result is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
          /    1      2 - x  \             
x*(5 + x)*|- ----- - --------|             
          |  5 + x          2|             
          \          (5 + x) /      /2 - x\
------------------------------ + log|-----|
            2 - x                   \5 + x/
$$\frac{x \left(x + 5\right) \left(- \frac{2 - x}{\left(x + 5\right)^{2}} - \frac{1}{x + 5}\right)}{2 - x} + \log{\left(\frac{2 - x}{x + 5} \right)}$$
The second derivative [src]
/     -2 + x\ /       /  1        1  \\
|-1 + ------|*|-2 + x*|------ + -----||
\     5 + x / \       \-2 + x   5 + x//
---------------------------------------
                 -2 + x                
$$\frac{\left(x \left(\frac{1}{x + 5} + \frac{1}{x - 2}\right) - 2\right) \left(\frac{x - 2}{x + 5} - 1\right)}{x - 2}$$
The third derivative [src]
/     -2 + x\ /  3        3         /    1          1              1        \\
|-1 + ------|*|------ + ----- - 2*x*|--------- + -------- + ----------------||
\     5 + x / |-2 + x   5 + x       |        2          2   (-2 + x)*(5 + x)||
              \                     \(-2 + x)    (5 + x)                    //
------------------------------------------------------------------------------
                                    -2 + x                                    
$$\frac{\left(\frac{x - 2}{x + 5} - 1\right) \left(- 2 x \left(\frac{1}{\left(x + 5\right)^{2}} + \frac{1}{\left(x - 2\right) \left(x + 5\right)} + \frac{1}{\left(x - 2\right)^{2}}\right) + \frac{3}{x + 5} + \frac{3}{x - 2}\right)}{x - 2}$$
The graph
Derivative of y=xln((2-x)/(5+x))