Mister Exam

Derivative of y=xchx-x^2chx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
             2        
x*cosh(x) - x *cosh(x)
$$- x^{2} \cosh{\left(x \right)} + x \cosh{\left(x \right)}$$
x*cosh(x) - x^2*cosh(x)
The graph
The first derivative [src]
             2                                
x*sinh(x) - x *sinh(x) - 2*x*cosh(x) + cosh(x)
$$- x^{2} \sinh{\left(x \right)} + x \sinh{\left(x \right)} - 2 x \cosh{\left(x \right)} + \cosh{\left(x \right)}$$
The second derivative [src]
                                      2                      
-2*cosh(x) + 2*sinh(x) + x*cosh(x) - x *cosh(x) - 4*x*sinh(x)
$$- x^{2} \cosh{\left(x \right)} - 4 x \sinh{\left(x \right)} + x \cosh{\left(x \right)} + 2 \sinh{\left(x \right)} - 2 \cosh{\left(x \right)}$$
The third derivative [src]
                                      2                      
-6*sinh(x) + 3*cosh(x) + x*sinh(x) - x *sinh(x) - 6*x*cosh(x)
$$- x^{2} \sinh{\left(x \right)} + x \sinh{\left(x \right)} - 6 x \cosh{\left(x \right)} - 6 \sinh{\left(x \right)} + 3 \cosh{\left(x \right)}$$
The graph
Derivative of y=xchx-x^2chx