Mister Exam

Other calculators


y=x^2*ln(1-x^2)

Derivative of y=x^2*ln(1-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2    /     2\
x *log\1 - x /
$$x^{2} \log{\left(1 - x^{2} \right)}$$
x^2*log(1 - x^2)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
      3                   
   2*x            /     2\
- ------ + 2*x*log\1 - x /
       2                  
  1 - x                   
$$- \frac{2 x^{3}}{1 - x^{2}} + 2 x \log{\left(1 - x^{2} \right)}$$
The second derivative [src]
  /             /          2 \              \
  |           2 |       2*x  |              |
  |          x *|-1 + -------|              |
  |     2       |           2|              |
  |  4*x        \     -1 + x /      /     2\|
2*|------- - ----------------- + log\1 - x /|
  |      2              2                   |
  \-1 + x         -1 + x                    /
$$2 \left(- \frac{x^{2} \left(\frac{2 x^{2}}{x^{2} - 1} - 1\right)}{x^{2} - 1} + \frac{4 x^{2}}{x^{2} - 1} + \log{\left(1 - x^{2} \right)}\right)$$
The third derivative [src]
    /                 /          2 \\
    |               2 |       4*x  ||
    |              x *|-3 + -------||
    |         2       |           2||
    |      6*x        \     -1 + x /|
4*x*|6 - ------- + -----------------|
    |          2              2     |
    \    -1 + x         -1 + x      /
-------------------------------------
                     2               
               -1 + x                
$$\frac{4 x \left(\frac{x^{2} \left(\frac{4 x^{2}}{x^{2} - 1} - 3\right)}{x^{2} - 1} - \frac{6 x^{2}}{x^{2} - 1} + 6\right)}{x^{2} - 1}$$
The graph
Derivative of y=x^2*ln(1-x^2)