Mister Exam

Other calculators


y=(x^2-2x+5)sinx

Derivative of y=(x^2-2x+5)sinx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/ 2          \       
\x  - 2*x + 5/*sin(x)
(x22x+5)sin(x)\left(x^{2} - 2 x + 5\right) \sin{\left(x \right)}
d // 2          \       \
--\\x  - 2*x + 5/*sin(x)/
dx                       
ddx(x22x+5)sin(x)\frac{d}{d x} \left(x^{2} - 2 x + 5\right) \sin{\left(x \right)}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x22x+5f{\left(x \right)} = x^{2} - 2 x + 5; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate x22x+5x^{2} - 2 x + 5 term by term:

      1. Apply the power rule: x2x^{2} goes to 2x2 x

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        So, the result is: 2-2

      3. The derivative of the constant 55 is zero.

      The result is: 2x22 x - 2

    g(x)=sin(x)g{\left(x \right)} = \sin{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. The derivative of sine is cosine:

      ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

    The result is: (2x2)sin(x)+(x22x+5)cos(x)\left(2 x - 2\right) \sin{\left(x \right)} + \left(x^{2} - 2 x + 5\right) \cos{\left(x \right)}

  2. Now simplify:

    (2x2)sin(x)+(x22x+5)cos(x)\left(2 x - 2\right) \sin{\left(x \right)} + \left(x^{2} - 2 x + 5\right) \cos{\left(x \right)}


The answer is:

(2x2)sin(x)+(x22x+5)cos(x)\left(2 x - 2\right) \sin{\left(x \right)} + \left(x^{2} - 2 x + 5\right) \cos{\left(x \right)}

The graph
02468-8-6-4-2-1010-200200
The first derivative [src]
                    / 2          \       
(-2 + 2*x)*sin(x) + \x  - 2*x + 5/*cos(x)
(2x2)sin(x)+(x22x+5)cos(x)\left(2 x - 2\right) \sin{\left(x \right)} + \left(x^{2} - 2 x + 5\right) \cos{\left(x \right)}
The second derivative [src]
           /     2      \                           
2*sin(x) - \5 + x  - 2*x/*sin(x) + 4*(-1 + x)*cos(x)
4(x1)cos(x)(x22x+5)sin(x)+2sin(x)4 \left(x - 1\right) \cos{\left(x \right)} - \left(x^{2} - 2 x + 5\right) \sin{\left(x \right)} + 2 \sin{\left(x \right)}
The third derivative [src]
           /     2      \                           
6*cos(x) - \5 + x  - 2*x/*cos(x) - 6*(-1 + x)*sin(x)
6(x1)sin(x)(x22x+5)cos(x)+6cos(x)- 6 \left(x - 1\right) \sin{\left(x \right)} - \left(x^{2} - 2 x + 5\right) \cos{\left(x \right)} + 6 \cos{\left(x \right)}
The graph
Derivative of y=(x^2-2x+5)sinx