Mister Exam

Other calculators


y=(x^2)/(2x-3)

Derivative of y=(x^2)/(2x-3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    2  
   x   
-------
2*x - 3
$$\frac{x^{2}}{2 x - 3}$$
x^2/(2*x - 3)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
        2             
     2*x         2*x  
- ---------- + -------
           2   2*x - 3
  (2*x - 3)           
$$- \frac{2 x^{2}}{\left(2 x - 3\right)^{2}} + \frac{2 x}{2 x - 3}$$
The second derivative [src]
  /                      2   \
  |      4*x          4*x    |
2*|1 - -------- + -----------|
  |    -3 + 2*x             2|
  \               (-3 + 2*x) /
------------------------------
           -3 + 2*x           
$$\frac{2 \left(\frac{4 x^{2}}{\left(2 x - 3\right)^{2}} - \frac{4 x}{2 x - 3} + 1\right)}{2 x - 3}$$
The third derivative [src]
   /            2              \
   |         4*x         4*x   |
12*|-1 - ----------- + --------|
   |               2   -3 + 2*x|
   \     (-3 + 2*x)            /
--------------------------------
                    2           
          (-3 + 2*x)            
$$\frac{12 \left(- \frac{4 x^{2}}{\left(2 x - 3\right)^{2}} + \frac{4 x}{2 x - 3} - 1\right)}{\left(2 x - 3\right)^{2}}$$
The graph
Derivative of y=(x^2)/(2x-3)