Mister Exam

Other calculators


y=x^(3)*cos11x

Derivative of y=x^(3)*cos11x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3          
x *cos(11*x)
$$x^{3} \cos{\left(11 x \right)}$$
d / 3          \
--\x *cos(11*x)/
dx              
$$\frac{d}{d x} x^{3} \cos{\left(11 x \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
      3                2          
- 11*x *sin(11*x) + 3*x *cos(11*x)
$$- 11 x^{3} \sin{\left(11 x \right)} + 3 x^{2} \cos{\left(11 x \right)}$$
The second derivative [src]
  /                   2                           \
x*\6*cos(11*x) - 121*x *cos(11*x) - 66*x*sin(11*x)/
$$x \left(- 121 x^{2} \cos{\left(11 x \right)} - 66 x \sin{\left(11 x \right)} + 6 \cos{\left(11 x \right)}\right)$$
The third derivative [src]
                    2                                     3          
6*cos(11*x) - 1089*x *cos(11*x) - 198*x*sin(11*x) + 1331*x *sin(11*x)
$$1331 x^{3} \sin{\left(11 x \right)} - 1089 x^{2} \cos{\left(11 x \right)} - 198 x \sin{\left(11 x \right)} + 6 \cos{\left(11 x \right)}$$
The graph
Derivative of y=x^(3)*cos11x