Mister Exam

Other calculators


y=x^10*sin12x

Derivative of y=x^10*sin12x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 10          
x  *sin(12*x)
x10sin(12x)x^{10} \sin{\left(12 x \right)}
x^10*sin(12*x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x10f{\left(x \right)} = x^{10}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x10x^{10} goes to 10x910 x^{9}

    g(x)=sin(12x)g{\left(x \right)} = \sin{\left(12 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=12xu = 12 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx12x\frac{d}{d x} 12 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 1212

      The result of the chain rule is:

      12cos(12x)12 \cos{\left(12 x \right)}

    The result is: 12x10cos(12x)+10x9sin(12x)12 x^{10} \cos{\left(12 x \right)} + 10 x^{9} \sin{\left(12 x \right)}

  2. Now simplify:

    x9(12xcos(12x)+10sin(12x))x^{9} \left(12 x \cos{\left(12 x \right)} + 10 \sin{\left(12 x \right)}\right)


The answer is:

x9(12xcos(12x)+10sin(12x))x^{9} \left(12 x \cos{\left(12 x \right)} + 10 \sin{\left(12 x \right)}\right)

The graph
02468-8-6-4-2-1010-200000000000200000000000
The first derivative [src]
    9                 10          
10*x *sin(12*x) + 12*x  *cos(12*x)
12x10cos(12x)+10x9sin(12x)12 x^{10} \cos{\left(12 x \right)} + 10 x^{9} \sin{\left(12 x \right)}
The second derivative [src]
   8 /                   2                           \
6*x *\15*sin(12*x) - 24*x *sin(12*x) + 40*x*cos(12*x)/
6x8(24x2sin(12x)+40xcos(12x)+15sin(12x))6 x^{8} \left(- 24 x^{2} \sin{\left(12 x \right)} + 40 x \cos{\left(12 x \right)} + 15 \sin{\left(12 x \right)}\right)
The third derivative [src]
    7 /                   2                 3                           \
72*x *\10*sin(12*x) - 60*x *sin(12*x) - 24*x *cos(12*x) + 45*x*cos(12*x)/
72x7(24x3cos(12x)60x2sin(12x)+45xcos(12x)+10sin(12x))72 x^{7} \left(- 24 x^{3} \cos{\left(12 x \right)} - 60 x^{2} \sin{\left(12 x \right)} + 45 x \cos{\left(12 x \right)} + 10 \sin{\left(12 x \right)}\right)
The graph
Derivative of y=x^10*sin12x