Mister Exam

Other calculators


y=x^5*sin3x^7

Derivative of y=x^5*sin3x^7

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 5    7     
x *sin (3*x)
$$x^{5} \sin^{7}{\left(3 x \right)}$$
d / 5    7     \
--\x *sin (3*x)/
dx              
$$\frac{d}{d x} x^{5} \sin^{7}{\left(3 x \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   4    7            5    6              
5*x *sin (3*x) + 21*x *sin (3*x)*cos(3*x)
$$21 x^{5} \sin^{6}{\left(3 x \right)} \cos{\left(3 x \right)} + 5 x^{4} \sin^{7}{\left(3 x \right)}$$
The second derivative [src]
 3    5      /      2            2 /   2             2     \                          \
x *sin (3*x)*\20*sin (3*x) - 63*x *\sin (3*x) - 6*cos (3*x)/ + 210*x*cos(3*x)*sin(3*x)/
$$x^{3} \left(- 63 x^{2} \left(\sin^{2}{\left(3 x \right)} - 6 \cos^{2}{\left(3 x \right)}\right) + 210 x \sin{\left(3 x \right)} \cos{\left(3 x \right)} + 20 \sin^{2}{\left(3 x \right)}\right) \sin^{5}{\left(3 x \right)}$$
The third derivative [src]
   2    4      /      3             2 /   2             2     \                3 /        2              2     \                     2              \
3*x *sin (3*x)*\20*sin (3*x) - 315*x *\sin (3*x) - 6*cos (3*x)/*sin(3*x) - 63*x *\- 30*cos (3*x) + 19*sin (3*x)/*cos(3*x) + 420*x*sin (3*x)*cos(3*x)/
$$3 x^{2} \left(- 63 x^{3} \cdot \left(19 \sin^{2}{\left(3 x \right)} - 30 \cos^{2}{\left(3 x \right)}\right) \cos{\left(3 x \right)} - 315 x^{2} \left(\sin^{2}{\left(3 x \right)} - 6 \cos^{2}{\left(3 x \right)}\right) \sin{\left(3 x \right)} + 420 x \sin^{2}{\left(3 x \right)} \cos{\left(3 x \right)} + 20 \sin^{3}{\left(3 x \right)}\right) \sin^{4}{\left(3 x \right)}$$
The graph
Derivative of y=x^5*sin3x^7