Mister Exam

Other calculators


y=x^8(cosx-3)

Derivative of y=x^8(cosx-3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 8             
x *(cos(x) - 3)
$$x^{8} \left(\cos{\left(x \right)} - 3\right)$$
d / 8             \
--\x *(cos(x) - 3)/
dx                 
$$\frac{d}{d x} x^{8} \left(\cos{\left(x \right)} - 3\right)$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Differentiate term by term:

      1. The derivative of cosine is negative sine:

      2. The derivative of the constant is zero.

      The result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   8             7             
- x *sin(x) + 8*x *(cos(x) - 3)
$$- x^{8} \sin{\left(x \right)} + 8 x^{7} \left(\cos{\left(x \right)} - 3\right)$$
The second derivative [src]
 6 /                    2                     \
x *\-168 + 56*cos(x) - x *cos(x) - 16*x*sin(x)/
$$x^{6} \left(- x^{2} \cos{\left(x \right)} - 16 x \sin{\left(x \right)} + 56 \cos{\left(x \right)} - 168\right)$$
The third derivative [src]
 5 /                      3                             2       \
x *\-1008 + 336*cos(x) + x *sin(x) - 168*x*sin(x) - 24*x *cos(x)/
$$x^{5} \left(x^{3} \sin{\left(x \right)} - 24 x^{2} \cos{\left(x \right)} - 168 x \sin{\left(x \right)} + 336 \cos{\left(x \right)} - 1008\right)$$
The graph
Derivative of y=x^8(cosx-3)