Mister Exam

Other calculators


y=x*(2+3*lnx)+2x³

Derivative of y=x*(2+3*lnx)+2x³

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
                      3
x*(2 + 3*log(x)) + 2*x 
$$2 x^{3} + x \left(3 \log{\left(x \right)} + 2\right)$$
x*(2 + 3*log(x)) + 2*x^3
Detail solution
  1. Differentiate term by term:

    1. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. The derivative of is .

          So, the result is:

        The result is:

      The result is:

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    The result is:


The answer is:

The graph
The first derivative [src]
                  2
5 + 3*log(x) + 6*x 
$$6 x^{2} + 3 \log{\left(x \right)} + 5$$
The second derivative [src]
  /1      \
3*|- + 4*x|
  \x      /
$$3 \left(4 x + \frac{1}{x}\right)$$
The third derivative [src]
  /    1 \
3*|4 - --|
  |     2|
  \    x /
$$3 \left(4 - \frac{1}{x^{2}}\right)$$
The graph
Derivative of y=x*(2+3*lnx)+2x³