Mister Exam

Other calculators


y=(x-3)(x+3)^2

Derivative of y=(x-3)(x+3)^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
               2
(x - 3)*(x + 3) 
(x3)(x+3)2\left(x - 3\right) \left(x + 3\right)^{2}
(x - 3)*(x + 3)^2
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x3f{\left(x \right)} = x - 3; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate x3x - 3 term by term:

      1. Apply the power rule: xx goes to 11

      2. The derivative of the constant 3-3 is zero.

      The result is: 11

    g(x)=(x+3)2g{\left(x \right)} = \left(x + 3\right)^{2}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=x+3u = x + 3.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddx(x+3)\frac{d}{d x} \left(x + 3\right):

      1. Differentiate x+3x + 3 term by term:

        1. Apply the power rule: xx goes to 11

        2. The derivative of the constant 33 is zero.

        The result is: 11

      The result of the chain rule is:

      2x+62 x + 6

    The result is: (x3)(2x+6)+(x+3)2\left(x - 3\right) \left(2 x + 6\right) + \left(x + 3\right)^{2}

  2. Now simplify:

    3(x1)(x+3)3 \left(x - 1\right) \left(x + 3\right)


The answer is:

3(x1)(x+3)3 \left(x - 1\right) \left(x + 3\right)

The graph
02468-8-6-4-2-1010-20002000
The first derivative [src]
       2                    
(x + 3)  + (6 + 2*x)*(x - 3)
(x3)(2x+6)+(x+3)2\left(x - 3\right) \left(2 x + 6\right) + \left(x + 3\right)^{2}
The second derivative [src]
6*(1 + x)
6(x+1)6 \left(x + 1\right)
The third derivative [src]
6
66
The graph
Derivative of y=(x-3)(x+3)^2