3 /x - 3\ |-----| \x + 2/
((x - 3)/(x + 2))^3
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
3 (x - 3) / 3 3*(x - 3)\ --------*(x + 2)*|----- - ---------| 3 |x + 2 2| (x + 2) \ (x + 2) / ------------------------------------ x - 3
/ -3 + x\ / 4*(-3 + x)\ 3*|-1 + ------|*(-3 + x)*|-2 + ----------| \ 2 + x / \ 2 + x / ------------------------------------------ 3 (2 + x)
/ / -3 + x\ \ | 2 3*|-1 + ------|*(-3 + x)| / -3 + x\ | 17*(-3 + x) 13*(-3 + x) \ 2 + x / | 3*|-1 + ------|*|-2 - ------------ + ----------- - ------------------------| \ 2 + x / | 2 2 + x 2 + x | \ (2 + x) / ---------------------------------------------------------------------------- 3 (2 + x)