3 /x - 3\ |-----| \x + 2/
((x - 3)/(x + 2))^3
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
3
(x - 3) / 3 3*(x - 3)\
--------*(x + 2)*|----- - ---------|
3 |x + 2 2|
(x + 2) \ (x + 2) /
------------------------------------
x - 3
/ -3 + x\ / 4*(-3 + x)\
3*|-1 + ------|*(-3 + x)*|-2 + ----------|
\ 2 + x / \ 2 + x /
------------------------------------------
3
(2 + x)
/ / -3 + x\ \
| 2 3*|-1 + ------|*(-3 + x)|
/ -3 + x\ | 17*(-3 + x) 13*(-3 + x) \ 2 + x / |
3*|-1 + ------|*|-2 - ------------ + ----------- - ------------------------|
\ 2 + x / | 2 2 + x 2 + x |
\ (2 + x) /
----------------------------------------------------------------------------
3
(2 + x)