Mister Exam

Other calculators


y=((x-3)/(x+2))^3

Derivative of y=((x-3)/(x+2))^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       3
/x - 3\ 
|-----| 
\x + 2/ 
$$\left(\frac{x - 3}{x + 2}\right)^{3}$$
((x - 3)/(x + 2))^3
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
       3                            
(x - 3)          /  3     3*(x - 3)\
--------*(x + 2)*|----- - ---------|
       3         |x + 2           2|
(x + 2)          \         (x + 2) /
------------------------------------
               x - 3                
$$\frac{\frac{\left(x - 3\right)^{3}}{\left(x + 2\right)^{3}} \left(x + 2\right) \left(- \frac{3 \left(x - 3\right)}{\left(x + 2\right)^{2}} + \frac{3}{x + 2}\right)}{x - 3}$$
The second derivative [src]
  /     -3 + x\          /     4*(-3 + x)\
3*|-1 + ------|*(-3 + x)*|-2 + ----------|
  \     2 + x /          \       2 + x   /
------------------------------------------
                        3                 
                 (2 + x)                  
$$\frac{3 \left(x - 3\right) \left(\frac{x - 3}{x + 2} - 1\right) \left(\frac{4 \left(x - 3\right)}{x + 2} - 2\right)}{\left(x + 2\right)^{3}}$$
The third derivative [src]
                /                                    /     -3 + x\         \
                |                2                 3*|-1 + ------|*(-3 + x)|
  /     -3 + x\ |     17*(-3 + x)    13*(-3 + x)     \     2 + x /         |
3*|-1 + ------|*|-2 - ------------ + ----------- - ------------------------|
  \     2 + x / |              2        2 + x               2 + x          |
                \       (2 + x)                                            /
----------------------------------------------------------------------------
                                         3                                  
                                  (2 + x)                                   
$$\frac{3 \left(\frac{x - 3}{x + 2} - 1\right) \left(- \frac{17 \left(x - 3\right)^{2}}{\left(x + 2\right)^{2}} - \frac{3 \left(x - 3\right) \left(\frac{x - 3}{x + 2} - 1\right)}{x + 2} + \frac{13 \left(x - 3\right)}{x + 2} - 2\right)}{\left(x + 2\right)^{3}}$$
The graph
Derivative of y=((x-3)/(x+2))^3